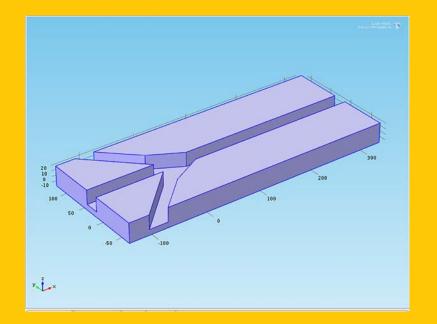
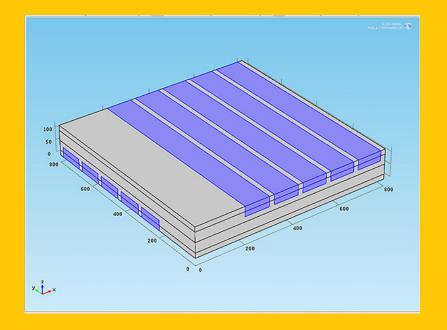
Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

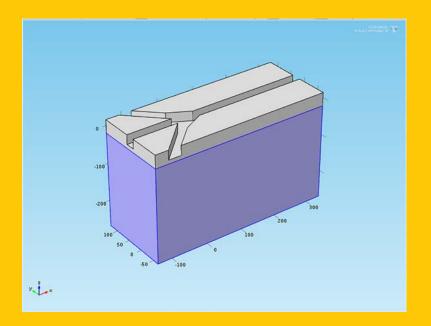

> Roger W. Pryor, Ph.D. CEO Pryor Knowledge Systems

> > COMSOL CONFERENCE 2014 BOSTON

Introduction


What is a Microreactor?

What is a Microreactor?


What is a Crossflow Heat Exchanger?

What is a Crossflow Heat Exchanger?

How is a Crossflow Heat Exchanger used with a Microreactor?

How is a Crossflow Heat Exchanger used with a Microreactor?

What does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

What does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

It facilitates: research in and

What does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

It facilitates: research in and production of

What does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

It facilitates: research in and production of new and exotic chemicals

What does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

It facilitates: research in and production of new and exotic chemicals using difficult, complex and highly exothermic reaction systems.

What else does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

What else does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

Complex exothermic reactions can now be: modeled and safely employed

What else does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

Complex exothermic reactions can now be: modeled and safely employed without extreme concern for excessive,

What else does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

Complex exothermic reactions can now be: modeled and safely employed without extreme concern for excessive, unexpected energy releases (explosions)

What else does a High Heat Transfer Crossflow Heat Exchanger Facilitate, when used with a Microreactor?

Complex exothermic reactions can now be: modeled and safely employed without extreme concern for excessive, unexpected energy releases (explosions) by applying First Principle Techniques.

Heat Exchanger Theory

Physical Relationships:

Physical Relationships:

Robert Boyle (1662): PV = k

Physical Relationships:

Robert Boyle (1662): PV = k

Joseph Louis Gay – Lussac (1809) $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Physical Relationships:

Robert Boyle (1662): PV = kJoseph Louis Gay – Lussac (1809) $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ Amedeo Avogadro (1811) $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

Physical Relationships Combined, Yield: $Emile \ Clapeyon(1834) \ PV = nRT$ P = pressure, V = volume, n = number of moles $R = Ideal \ gas$ T = temperature

Physical Relationships Combined and Adjusted Yield:

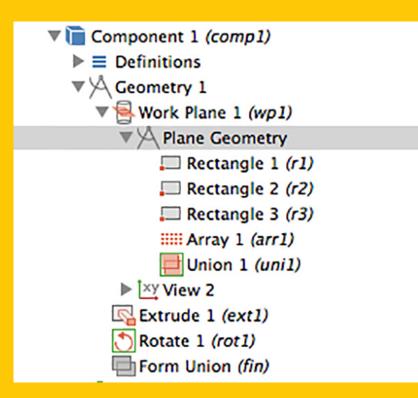
Johannes Diderik van der Waals (1873, 1910 NP)

$$\left(P + \frac{n^2 a}{V^2}\right) \left(V - nb\right) = nRT$$

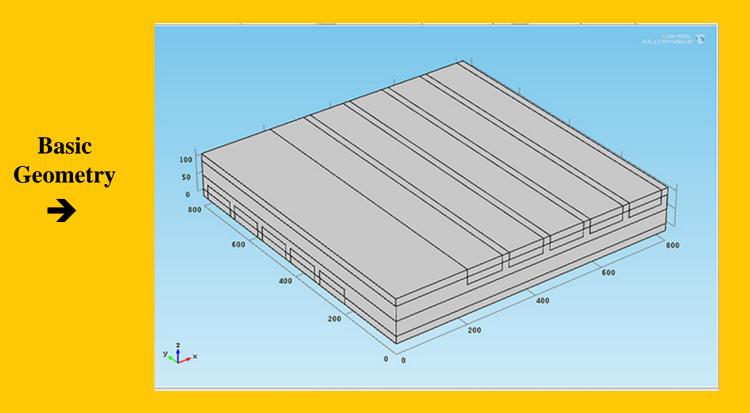
a = *attraction factor*, *b* = *volume excluded factor*

```
Physical Relationships,
 Solids & Liquids:
        Joseph Fourier (1822)
        q = k\Delta T
        q = local heat flux
        k = thermal conductivity
        \Delta T = temperature gradient
```

1. Advection = transfer through motion or momentum

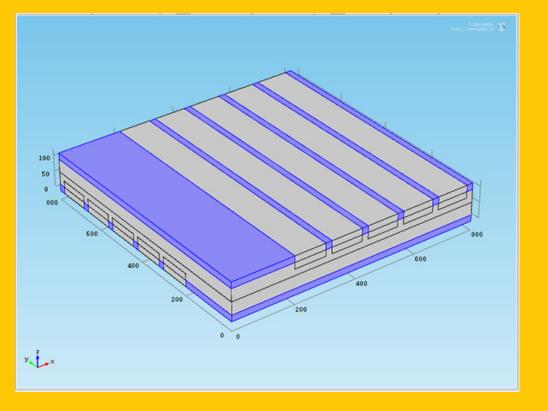

- **1.** Advection = transfer through motion or momentum
- 2. Conduction-Diffusion = transfer by direct contact

- **1.** Advection = transfer through motion or momentum
- 2. Conduction-Diffusion = transfer by direct contact
- 3. Convection-Diffusion = transfer by fluid motion and contact

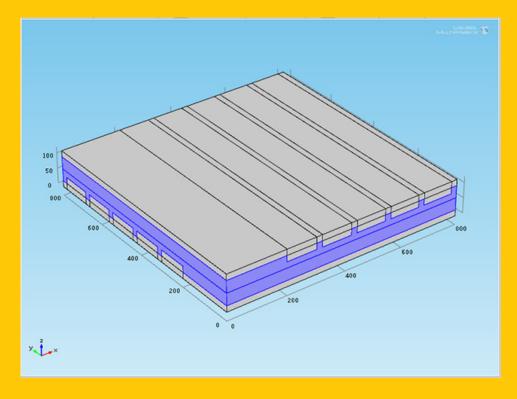

- **1.** Advection = transfer through motion or momentum
- 2. Conduction-Diffusion = transfer by direct contact
- 3. Convection-Diffusion = transfer by fluid motion and contact
- 4. Radiation = transfer by emission

Crossflow Heat Exchanger Model

Crossflow Heat Exchanger Geometry

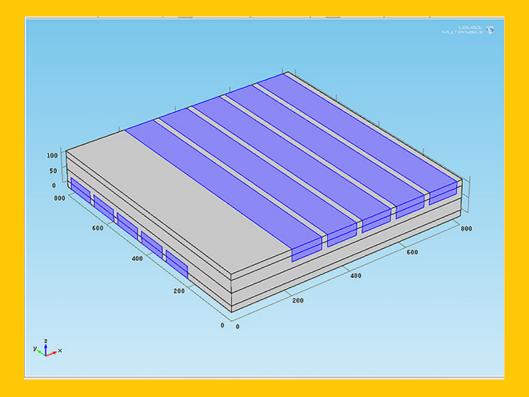

Crossflow Heat Exchanger Geometry

Crossflow Heat Exchanger Geometry

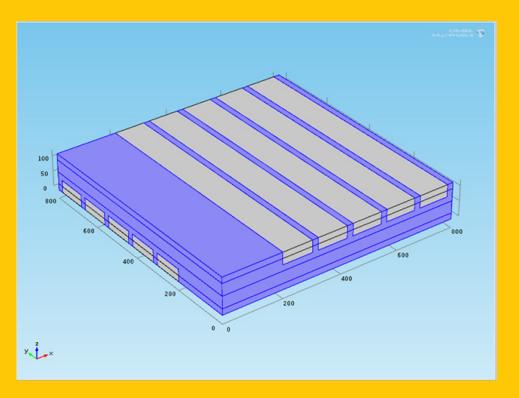

Stainless Steel Highlights

 \rightarrow

Crossflow Heat Exchanger Geometry


Copper Highlights

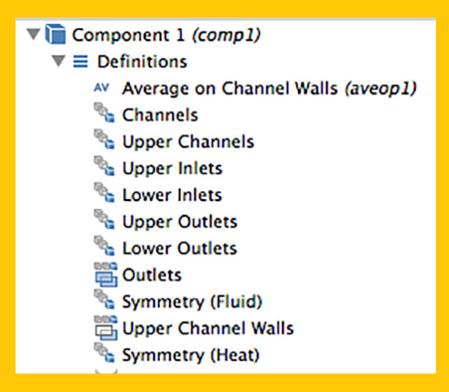
Crossflow Heat Exchanger Geometry



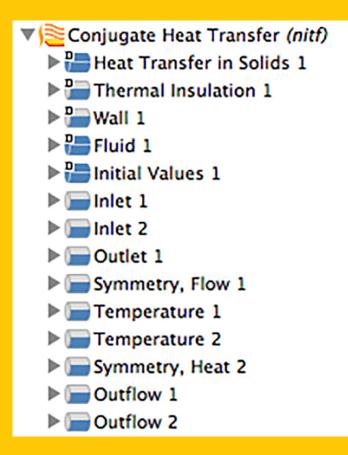
Crossflow Heat Exchanger Geometry

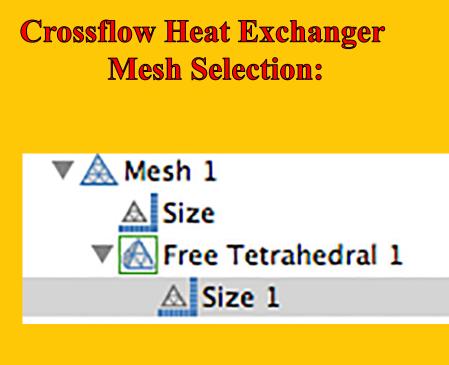
All Stainless Steel

Crossflow Heat Exchanger Model Builder Details

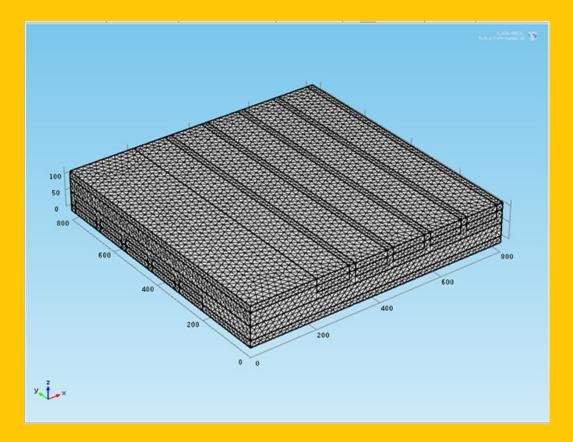

Crossflow Heat Exchanger Model Input Parameters:

Crossflow Heat Exchanger Model Input Parameters:


Parameters

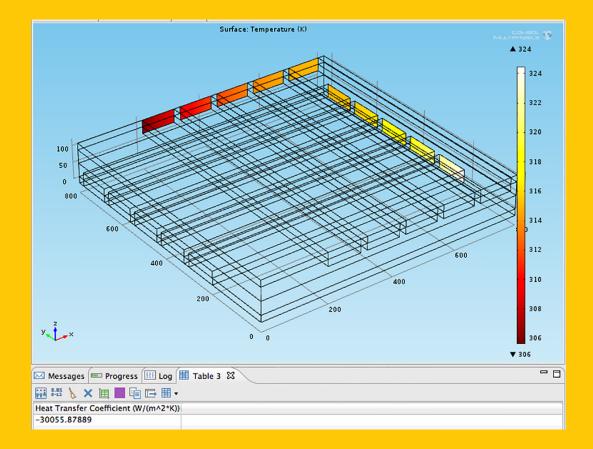

Name	Expression	Value	Description
T_cold	300.0[K]	300.00 K	Temperature cold stream
T_hot	330.0[K]	330.00 K	Temperature hot stream
u_avg	2.5[mm/s]	0.0025000 m/s	Average inlet velocity

Crossflow Heat Exchanger Model Explicit Designations:


Crossflow Heat Exchanger Conjugate Model Conditions:

▼ Geometric Entity Selection					
Geometric entity level: Entire geometry	\$				
(U)					
Active					
Element Size					
Calibrate for:					
General physics					
Predefined Normal					
• Custom					
▼ Element Size Parameters					
☑ Maximum element size:					
20	μm				
Minimum element size:					
14.4	μm				
Maximum element growth rate:					
1.5					
Curvature factor:					
0.6					
Resolution of narrow regions:					
0.5					

Crossflow Heat Exchanger Meshed Geometry:



Results: Heat Transfer in Crossflow Heat Exchanger Model

Crossflow Heat Exchanger Model Computation Results

Results: Heat Transfer in Crossflow Heat Exchanger Model

Crossflow Heat Exchanger Final Results:

Thank You!