Role of the Diffusion Current in Nonequilibrium Modelling of Welding Arcs

Margarita Baeva

Leibniz Institute for Plasma Science and Technology, Greifswald, Germany

COMSOL CONFERENCE 2014 CAMBRIDGE

FROM IDEA TO PROTOTYPE

Aim of research

- Unified non-equilibrium model of the arc plasma and electrodes
- Arc-electrode interaction

Outline

- 1. Subject: free-burning arc
- 2. Basic features of the model
- 3. Diffusion current and generalized Ohm's law
- 4. Realization in COMSOL
- 5. Results
- 6. Concluding remarks

1. Subject: free-burning arc

- Electrodes important constituents of plasma devices determining the discharge properties
- Near-electrode regions enable the current transfer, control the energy balance and heating of electrodes
- Modelling allows us to study the plasmaelectrode interaction, to describe the arc from electrode to electrode

General schematic of the model

Cathode: W, La-W rod, r=1-2 mm, hemispherical/conical tip

Gas: Ar, 1 atm (12-15 slpm), arc length 5-10 mm

Anode: Cu, steel (water cooled)

Current: 100 – 200 A

Axially symmetric 2D

2. Basic features of the model

Non-equilibrium description in the whole arc domain

 no assumption of thermal and chemical equilibrium but quasineutrality

Navier-Stokes equations for conservation of

- mass
- momentum
- energy of electrons and heavy species
- species (atoms, singly charged ions)
- Current continuity, Ohm's and Ampère's law
- Electric and heat conduction in the electrodes

$$\nabla \cdot \rho \vec{u} = 0$$

$$\rho (\vec{u} \cdot \nabla) \vec{u} = \nabla \cdot (-p\hat{I} + \hat{\tau}) + \vec{j} \times \vec{B}$$

$$\nabla \cdot \vec{J}_{\varepsilon} = -e\vec{j}_{e} \cdot \vec{E} + S_{\varepsilon},$$

$$\nabla \cdot \vec{J}_{h} = e\vec{j}_{i} \cdot \vec{E} - \rho C_{p}\vec{u} \cdot \nabla T + S_{h},$$

$$\nabla \cdot \vec{J}_{i} = S_{i} - \rho \vec{u} \cdot \nabla y_{i},$$

$$\nabla \cdot \vec{j} = 0,$$

$$\frac{\vec{j}}{e} = \vec{j}_{i} - \vec{j}_{e},$$

$$\nabla \times (\mu_{0}^{-1}\vec{B}) = \vec{j},$$

$$-\nabla \cdot (\lambda \nabla T) = \sigma E^{2}$$

$$\nabla \cdot (\sigma \nabla \Phi) = 0$$

3. Diffusion current and generalized Ohm's law $\prod_{Greefswald} P$

Diffusive mass fluxes of the individual components

$$\vec{J}_i = \rho y_i \left(\vec{w}_i - \vec{u} \right) \qquad \sum_i \vec{J}_i = 0 \qquad \rho \vec{u} = \sum_i \rho_i \vec{w}_i$$

Stefan-Maxwell equations

$$\sum_{j \neq i} \frac{n_i n_j k_B T_{ij} C_{ij}}{n D_{ij}} \left(\vec{w}_i - \vec{w}_j \right) = -\nabla p_i + y_i \nabla p - R_i^T + Z_i n_i e \vec{E}$$

$$\sum_{j \neq i} \frac{z_i z_j}{\hat{D}_{ij}} \left(\vec{w}_i - \vec{w}_j \right) = \vec{G}_i = \vec{H}_i + \frac{Z_i e}{m_i} \rho_i \frac{\vec{E}}{p}$$

$$\vec{J}_i = \frac{y_i}{z_i} \rho D_i \vec{G}_i - y_i \sum_j \frac{y_j}{z_j} \rho D_j \vec{G}_j$$

Generalized Ohm's law

 $= \sigma \vec{E} + \vec{\Delta j_{diff}}$

3. Diffusion current and generalized Ohm's law

N. A. Almeida, M. S. Benilov, G. V. Naidis, J. Phys. D: Appl. Phys. 41:245201 (2008) M. Baeva, Cambridge, UK, 18.09.2014

Modules used

- Laminar flow p, u
- Electric currents j, V
- Magnetic fields A -> B
- Weak form PDE **T**, **T**_e, **y**_i

Computation details

- 2D axisymmetric
- stationary
- fully coupled,

direct (PARDISO)

Mesh

triangular elements 18.6k

number of elements 19.4k

smallest element size

on the cathode tip \sim (10-20) μ m

maximum element size 1 mm

Discretization

quadratic

Temperature distribution

Thermal equilibrium in the core plasma

Nonequilibrium – near-electrode regions and arc fringes

M. Baeva, Cambridge, UK, 18.09.2014

Temperature distribution

along the arc axis

cut line perpendicular to the arc axis

0.1 mm away from the cathode tip

0.1 mm away from the anode

5. Results

The drift transport of electrons to the electrode is virtually compensated by the diffusion transport.

5. Results

Electric potential

Grei

- COMSOL Multiphysics was used to solve a set of fully coupled physics equations describing welding arc in the frame of a nonequilibrium model.
- The generalized Ohm's law including a diffusion current component was implemented in order to describe the processes on the plasma edge in a physically justified manner.
- "Wish" list
 - implementation of finite volume approach for Electric currents (to obtain correct current densities on internal boundaries)
 implementation of limiters (to preserve physically reasonable results)

Contact

Leibniz Institute for Plasma Science and Technology

Address: Felix-Hausdorff-Str. 2, 17489 Greifswald Phone: +49 - 3834 - 554 300, Fax: +49 - 3834 - 554 301 E-Mail: welcome@inp-greifswald.de, Web: www.inp-greifswald.de

M. Baeva, Cambridge, UK, 18.09.2014