Magnetic heating of iron oxide Nanoparticles with alternating magnetic field for hyperthermia applications

M.Sneha, R. Sakthivishnu, N.Meenakshi Sundaram

Department of Biomedical Engineering, PSG College of Technology, Peelamedu, Coimbatore 641004.

Objective: The nanoparticle can be made to heat up, which leads to their use as hyperthermia agents, delivering toxics amounts of thermal energy to tumours. Moderate degree of tissue worming results in more effective cell destruction.

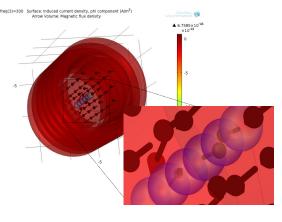
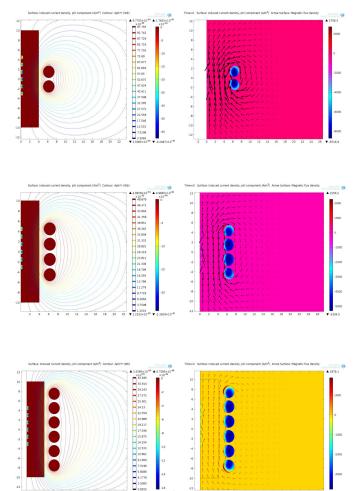


Figure 1. Iron oxide Nanoparticle in Magnetic Field

Physics of Magnetism

- The magnetic induction is given by $B = \mu_0(H + M)$
- Equilibrium magnetization of the [M] system is described by Langevin equation (M)= Nµ_{ef} [cth(µ_{ef}H/K_BT)-(K_bT/µ_{ef}H)]
- As the external magnetic field is enhanced, the blocking temperature decreases by a power law


 $T_b(H) = t_b(0) (1-H/Hc)^k$

- Magnetic relaxation SAR = $4.1868\pi\mu_0^2 \phi Ms^2 V/1000 kT H_0^2 V (2\pi VT/1+(2\pi vT)^2)$
- The Neel and Brownian magnetic relaxation times of a particle are given by

$$\begin{split} \tau_{\rm N} &= \tau_0 \; e \; (^{\rm KV \; M/kT)} \\ \tau_{\rm B} &= 3 n V_{\rm H} / \; k T \\ \tau &= \tau_{\rm B} \; \tau_{\rm N} / \; \tau_{\rm B} + \tau_{\rm N} \end{split}$$

size (nm)	M _s	H _c	(T _b) °C	M _R	Reference
4	90	-	25	-	L.A Cano et al., 2010
4.2	75	318 G	19	-	Guardia et al., 2011
6.6	71	16 G	203	-	Caruntu et al., 2007
8.1	65	70 G	49	-	Guardia et al., 2011
8.5	31	0	100	0	Zhen et al., 2011
10	8.4	0	-	-	H Lu et al., 2004
11.6	77	15 G	264	low	Caruntu et al., 2007
12.5	60	0	245	-	J.Devkota et al., 2014
14	62.1	0	-	0	N.Arsalani et al., 2010
17	82		>275	-	Guardia et al., 2011
20	70	negligible	-	1.19	Sara Gil et al., 2013

Table 1. Particle size vs Magnetic properties

Reference

R.E Rosensweig ,"Heating magnetic fluid with alternating magnetic field", Journal of Magnetism and Magnetic Materials, Vol.252, pp. 370-374 (2002)

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore