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Introduction

» Fluid flow patterns contained between two concentric
rotating cylinders has received noticeable attention in
various fields of study.

 One widely used application of this system is the
rotational viscometer. This study focuses on the
analysis of CFD of a Newtonian incompressible fluid
in the annular gap for the case where non-ideal end
effects are included using COMSOL Multiphysics ™.,

* The torque behavior imparted by fluid on the inner
cylinder is evaluated to better understand non ideal
fluid behavior.
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Historical Background

 The study of flow behavior of fluid comprised

between two cylinder has a rich experimental history.

» Sir George Gabriel Stokes first mentioned it in the
Transactions of the Cambridge Philosophical Society
in 1848.

» Max Margules was the first to propose constructing a
viscometer based on the rotating cylinder principle in
1881.

* In 1888, Arnulph Mallock did an experiment on the
viscosity of water using a pair of concentric

cylinders.

* In 1890, Couette published a study of viscosity using

a pair of cylinders where the outer one was rotating  payrice Couette (1858 — 1953)
and inner one suspended on a fiber. Rheologica Acta 33:357-368 (1994)




Early Viscometer Designs
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The cylinder viscometer of M. Couette (1888)

’ *
(Rheologica Acta 33:357-368 (1994)) Arnulph Mallock’s apparatus (1888)

From 18t century to now, many developments in this field have occurred and are still ongoing .

*Reference: C. David Andereck andF. Hayot, “Ordered and Turbulent Patterns in Taylor-Couette Flow”, The Ohio
State University, Columbus, Ohio, NATO ASI Series, Series B: Physics Vol.297



Industrial Applications (7 em H m—
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* Production of oil and gas

* Centrifugally-driven separation processes

* Electrochemical cells

* Viscometers
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* Tribology
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* Hydraulic equipment

®* Chemical reactors




Navier-Stokes Equations in Polar
Coordinates

Polar Component Form
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Navier-Stokes Equations for 1- D Model
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Computing on CFD Module in COMSOL

Meshed Geometry

- N The 3-D geometry of concentric rotating cylinder
01| n system where the inner cylinder is rotating and
| outer cylinder is stationary was developed by using
S | =™ the COMSOL Computational Fluid Dynamics
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1-D Model

Velocity Profiles in the Annulus at Various Rotational Speeds
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3 — D Model Images from COMSOL

Effect of Cylinder Inner Radius on Fluid Velocity Profiles
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Velocity Profiles for 3-D Model

Rotating Inner Cylinder and Stationary Outer Cylinder
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Different planes

In

Profiles for 3—-D Model
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Profiles for 3-D Model in Different planes
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Pressure Profiles for 3-D and 1-D Model
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Computational Challenges
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Key Observations

* The velocity profile approaches a becomes fully developed state only after
traveling a distance that is several times the annular gap width.

* The analytical solution for the case where the fluid velocity profile depends
only on the azimuthal component of the velocity vector in the radial
direction is compared to the 3-D solution and shown to have good
agreement in the fully-developed zone.

» The pressure gradient increases with increasing rotational speed.

» The value of shear stress acting on inner rotating cylinder is minimum and
it is at it’s maximum on the outer stationary wall.

« By this study a foundation has been laid for further application to non-
Newtonian fluids used in drilling muds or separation.
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