> Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSOI Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Electrostatic Precipitators Modelling and Analytical Verification Concept

Donato Rubinetti ¹ Daniel A. Weiss ¹ Walter Egli ²

¹Institute of Thermal- and Fluid-Engineering University of Applied Sciences Northwestern Switzerland

²EGW Software Engineering

Outline

Donato Rubinetti

- Introduction
- Assumptions
- Electrostatics
- COMSOI Setup
- COMSOL Solution
- Analytical Verification
- Discussion
- Experimental Validation
- Summary

- Introduction
- Assumptions
- Electrostatics
- COMSOL Setup
- COMSOL Solution
- Analytical Verification
- Discussion
- Experimental Validation
- Summary

Assumptions

Electrostatic Precipitators

Donato Rubinetti

Introduction

Assumptions

- Electrostatics
- COMSOI Setup
- COMSOL Solution
- Analytical Verification
- Discussion
- Experimental Validation
- Summary

- spherical particles
- fluid (air) incompressible, ideal gas behavior, turbulent flow
- fully developed velocity profile
- isothermal flow
- buoyancy neglected
- · convective and diffusive terms neglected
- free slip electrode

Donato Rubinetti

Introduction

Assumptions

Electrostatics

Numerical Model

COMSC Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Electrostatics

Numerical Model

$$\nabla \cdot \boldsymbol{E} = \frac{\rho_{el}}{\varepsilon_0} \tag{1}$$

$$\boldsymbol{E} = -\nabla\phi \tag{2}$$

$$abla \cdot \boldsymbol{J} = \boldsymbol{0}$$
 (3)

$$\boldsymbol{J} = \rho_{el}(\boldsymbol{w} + b\boldsymbol{E}) - \mathcal{D}\boldsymbol{\nabla}\boldsymbol{\rho_{el}} \tag{4}$$

$$\nabla^2 \phi = -\frac{\rho_{el}}{\varepsilon_0}$$
(5)
$$E \nabla \rho_{el} = -\frac{\rho_{el}^2}{\varepsilon_0}$$
(6)

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSO Setup

Boundary Conditions Iteration Schem

COMSOL Solution

Analytical Verification

Discussior

Experimenta Validation

Summary

Outlet Outlet Free Slip Wall No Slip Wall Ζ Stick Bounce $\rightarrow r$ ϕ_2 : Ground $\phi_1 = 18 \, kV$ **Turbulent Flow** $\frac{J_0}{b E_0}$ $\rho_{el_0} =$ computational domain R_1 R_2 Particle Tracing Inlet Inlet

COMSOL Setup

Boundary Conditions

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSOL Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Analytical Verfication

Electric Field Strength along the radius

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSOL Setup

COMSOL Solution

Analytical Verification

Discussion

Experimenta Validation

Summary

Analytical Verfication

Space Charge Density along the radius

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSOL Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Discussion

Flow Simulation

• no slip - BC on emitting electrode

COMSOL Setup

- iteration scheme computation time efficient and robust
- automation of the iterative procedure fully coupled approach (solver-tuning)
- include diffusion and convection in the physical model

Analytical Verification

- physical model is *mathematically* correct
- experimental validation is delicate

Source: Poppner, Marc et al. (2005): Electric Fields coupled with ion space charge. Part 1 + 2. Journal of Electrostatics. Volume 63. S.775-787. Amsterdam: Elsevier.

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSOI Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Experimental Validation

Summary

Electrostatic Precipitators

Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSO Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Completed Points

- Simulation of an entire ESP including
 - Flow Simulation
 - Electrostatics + Charge Conservation
 - Particle Charging Processes
 - Particle Motion + Deposition Efficiency

Conclusions

- Customizable code needed (user-defined PDEs)
- Concept numerically robust and practical
- Analytical verification appropiate
- Experimental validation quite delicate

> Donato Rubinetti

Introduction

Assumptions

Electrostatics

COMSO Setup

COMSOL Solution

Analytical Verification

Discussion

Experimental Validation

Summary

Thank you for your attention.

Donato Rubinetti

Appendix

Industrial Standard

Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I II Maxwells Equations Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strength

Charging Processes

Demo

Appendix

Industrial Standard

Source: http://www.neundorfer.com/knowledgebase/electrostaticprecipitators. Accessed on 13/10/2015

Donato Rubinetti

Appendix Industrial

Coupled Physics

Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I Exp. Validation II Maxwells Equations Schiller-Naumann-Drag Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strengtl

Charging Processes

Demo

Appendix Coupled Physics in ESPs

<ロト < 団ト < 豆ト < 豆ト < 豆ト 三日 のへで</p>

Donato Rubinetti

Analytical Verification

Exp. Validation I Exp. Validation

Naumann-Drag

Charging

Appendix

Dimensionless Equations

$$\frac{E}{E_{o}} = \hat{E} = \frac{1}{\hat{r}}\sqrt{1 + \hat{A}(\hat{r}^{2} - 1)}$$

$$\frac{\rho_{el}}{\varepsilon_{0}E_{o}} = \hat{\rho}_{el} = \frac{\hat{A}}{\sqrt{1 + \hat{A}(\hat{r}^{2} - 1)}}$$

$$\hat{A} = \frac{j_{o}r_{E}}{\varepsilon_{0}bE_{o}^{2}}$$
(9)

_

<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<日×</p>
<10</p>

Donato Rubinetti

Appendix

Experimental Validation I

Appendix

Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I

Exp. Validation

Maxwells Equations

Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strengtl

Charging Processes

Demo

Space Charge Density

Donato Rubinetti

Exp. Validation I Exp. Validation

Cunningham

Charging

н

Appendix

Experimental Validation II

Electric Potential

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I II

Maxwells Equations

Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strength

Charging Processes

Demo

Appendix

Maxwells Equations

$$\nabla \cdot \boldsymbol{D} = \rho_{el} \tag{10}$$
$$\nabla \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} = \boldsymbol{J} \tag{11}$$
$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{0} \tag{12}$$
$$\nabla \cdot \boldsymbol{B} = \boldsymbol{0} \tag{13}$$

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I I

Maxwells Equations

Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strength

Charging Processes

Demo

Appendix

Schiller-Naumann Drag Model

$$F_D = \frac{1}{\tau_p} m_p w_p \tag{14}$$
$$4\rho_n {d_n}^2 \tag{14}$$

$$\tau_p = \frac{4\rho_p a_p}{3\mu C_D R e_p} \tag{15}$$

$$C_D = \frac{24}{Re_p} (1 + 0.15 Re_p^{0.637})$$
(16)

$$Re_p = \frac{\rho w_p d_p}{\mu} \tag{17}$$

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation II Maxwells Equations Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strength

Charging Processes $\lambda \sim 10^{-8} {\rm m}$

$$C_c = 1 + \frac{\lambda}{d_p} \Big[2.34 + 1.05 \ exp\Big(-0.39 \frac{d_p}{\lambda} \Big) \Big]$$
(18)

Appendix

Cunningham Coefficient

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I Exp. Validation II Maxwells Equations Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strength

Charging Processes

Demo

Appendix

Deposition Efficiency

$$\eta_{ESP} = 1 - \frac{N_{out}}{N_0} = 1 - exp\left(\frac{-w_p A_c}{\dot{V}}\right) \tag{19}$$

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation II Maxwells Equations Schiller-Naumann-Drag

Deposition Efficiency

Corona Onset Field Strength

Charging Processes Demo

Appendix Corona Onset Field Strength

$$E_0 = 3 \times 10^6 f_r \left(m_s + 0.03 \sqrt{\frac{m_s}{\frac{d_e}{2}}} \right)$$
(20)
$$m_s = \frac{p}{p_{ref}} \frac{T_{ref}}{T}$$
(21)

Donato Rubinetti

Exp. Validation I Exp. Validation

Naumann-Drag

Charging Processes

Appendix

Particle Charging Processes

Diffusion Charging

$$q_d(t) = \frac{2\pi\varepsilon_0 kT d_p}{e} ln \left(1 + \frac{t}{\tau_d}\right)$$
(22)

Field Charging

1

$$q_f(t) = \left(\frac{3\varepsilon}{\varepsilon + 2}\right) \pi \varepsilon_0 E d_p^2 \frac{t}{t + \tau_f}$$
(23)

Donato Rubinetti

Appendi×

Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation II Maxwells Equations Schiller-Naumann-Drag Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strengtł

Charging Processes

Demo

Appendix

Demo (Source: youtube.com/pentenrieder)

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation II

Maxwells Equations Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strengtł

Charging Processes

Demo

Appendix Demo

Donato Rubinetti

Appendix Industrial Standard Veolocity Profile Analytical Verification Exp. Validation II Maxwells Equations Schiller-Naumann-Drag Cunningham Coefficient Deposition Efficiency Corona Onset

Field Streng

Charging Processes

Demo

Appendix Demo

Donato Rubinetti

Appendix Demo

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation I Exp. Validation I Exp. Validation II Maxwells Equations Schiller-Naumann-Drag Cunningham Coefficient Deposition Efficiency Corona Onset Field Strength

Charging Processes

Demo

Donato Rubinetti

Appendix Industrial Standard Coupled Physics Velocity Profile Analytical Verification Exp. Validation II Maxwells

Equations Schiller-Naumann-Drag

Cunningham Coefficient

Deposition Efficiency

Corona Onset Field Strengtł

Charging Processes

Demo

Appendix Demo

