Towards a microscopic model for species transport in Lithium-Sulphur cells

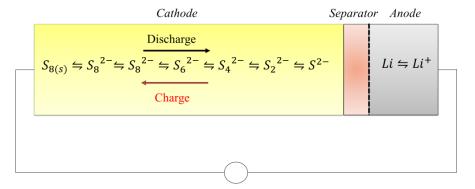
15/10/2015

G. Minton, R. Purkayastha, L. O'Neill, S. Walus, M. Wild, M. Marinescu, T. Zhang, G. Offer

Imperial College London

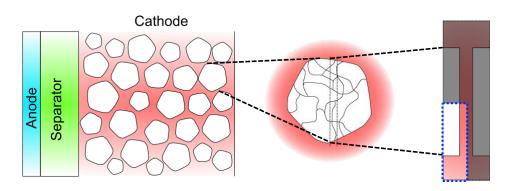
OXIS Energy and the REVB project

- OXIS energy have been working on Lithium Sulfur since 2005 in the Culham Science Centre (Oxfordshire, UK)
- Currently involved in the Revolutionary Electric Vehicle Battery project, in conjunction with Imperial College London, Cranfield University and Ricardo
 - Overall aim is to develop a 400Wh/kg cell
 - Also includes the development of an advanced energy system controller and the use of simulation-led R&D
- Modelling activities fall into four broad groups:
 - Battery management system (equivalent circuit)
 - Thermal behaviour
 - Homogeneous cell models
 - Microscopic models

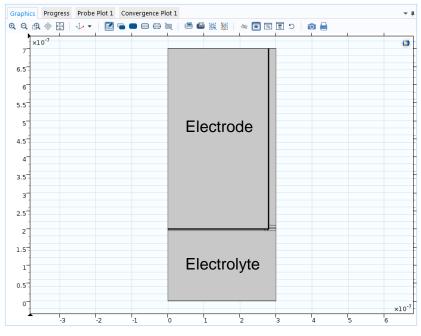


Li-S overview

- Overall cell discharge reaction: $16 Li + S_8 \rightleftharpoons 8 Li_2S$
- Process characterised by a cascade of sulfur reduction reactions at the electrode/electrolyte interface, from S_8^{2-} to S_8^{2-}


- True reaction path much more complex multiple chemical as well as electrochemical steps¹.
- No intercalation, but porosity and reactive surface area depend on how and where S_8 and Li_2S_n precipitate at the end of charge/discharge.
- Most reactions occur in the electrolyte phase

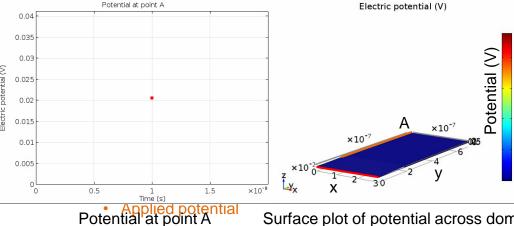
- Cathode porosity affects cell performance:
 - Low porosity (macroporous) has low performance due to low electrochemically active surface area
 - High porosity (microporous) has low performance, despite a high active surface area
- Can we understand this in terms of species locations in the porous network?
- 1. M. Wild et al, "Lithium Sulfur Batteries, A Mechanistic Review," Energy Environ. Sci., 2015, Accepted Manuscript

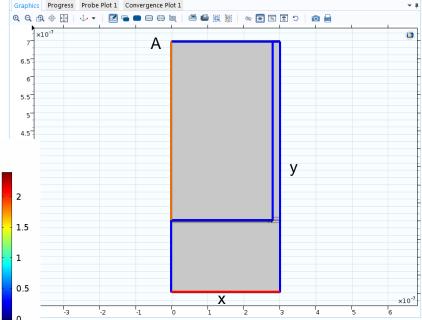


Model summary

- Assume cathode is made from agglomerates separated by macropores
- Within each agglomerate is a meso/microporous network
- Simplify this to a slit pore geometry
- Use symmetry to simplify the model and input to COMSOL

Model summary


Hard-sphere volume of electrolyte species accounted for


$$\mu_i = k_B T \ln c_i + z_i e_o \phi + \mu_i^{ex}$$

Species transport described by modified Nernst-Planck equation

• COMSION modules use $\phi_i \nabla^2 c_i + z_i e_o D_i \nabla \cdot (c_i \nabla \phi) + D_i \nabla \cdot (c_i \nabla \mu_i^{ex})$ dt Poisson equation module

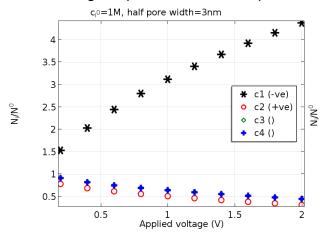
General form polifficione for Mistratio Planck redudation volume

Surface plot of potential across domain

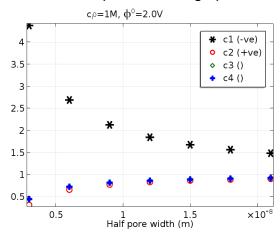
Results – pore width and applied voltage

Assume four mobile species in electrolyte:

Species	Charge	Radius (nm)
c ₁	-1	0.3
C ₂	1	0.3
c ₃	0	0.3
C ₄	0	0.3


Initial concentration $c_i^0 = 1$ M

Calculate the ratio of the number of ions in the charged pore to the number in an uncharged pore:

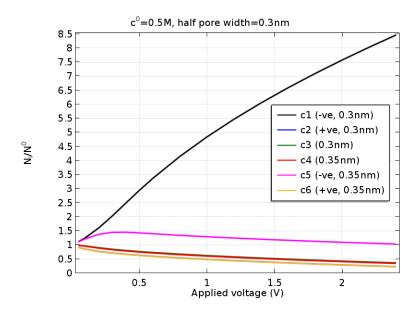

$$\frac{N_i}{N^0} = \frac{\int dAc_i}{\int dAc_i}$$

 $\frac{N_i}{N^0} > 1$ indicates absorption of species into the pore

Voltage dependence, narrow pore

Pore width dependence, high potential

- Counter-ions (negative species) absorbed into mesopore
- Co-ions and neutral species pushed out into macropore/bulk
- Effect stronger as voltage increased or pore size decreased
- Purely an effect of ion crowding (i.e. accounting for the ion volume)


Results – ion size with more than one counter-ion species

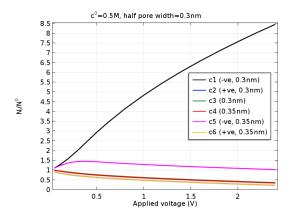
In an Li-S cell we have more than one charge carrying species, all of different sizes.

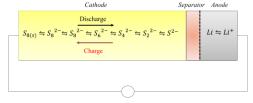
Now we consider what happens in an electrolyte with 6 species:

Species	Charge	Radius (nm)
C ₁	-1	0.3
C ₂	+1	0.3
c ₃	0	0.3
C ₄	0	0.35
c ₅	-1	0.35
c ₆	+1	0.35

Initial concentration $c_i^0 = 0.5M$

- As a counter-ion, c₅ is initially absorbed into the pore
- At higher potentials, the larger size of c₅ means that it is displaced by c₁, excluding it from the pore, along with the co-ions and neutral species.

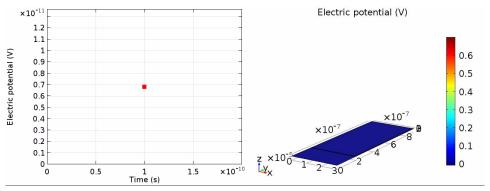



What does this mean for Li-S cell behavour?

We expect high order polysulfides to be larger than low order species.

$$r_{S_8^{2-}} > r_{S_6^{2-}} > r_{S_4^{2-}} > r_{S_2^{2-}} > r_{S^{2-}}$$

- Higher order species should tend to accumulate in larger pores.
 - Implies that different electrochemical reactions will dominate in different parts of the macro/micro-structure.
- What about precipitation?
 - This involves Li^+ and S_n^{2-} combining to form neutral Li_2S_n , which then agglomerates.
 - Increased prevalence of Li^+ and neutral species suggests that precipitation occurs in larger pores:
 - Blocking of larger pores, restricting species transport through the cell?
 - Blocking of mesopore entrances, preventing replenishment of active species?



Next steps

Addition of electrochemical reactions at the electrode/electrolyte interface:

e.g.
$$c_3 + e^- \rightleftharpoons c_1^- \qquad \Delta \phi^0 = 0.7V$$

- · Plan to investigate simple combinations of chemical and electrochemical reactions.
- · Inclusion of precipitation
- Introduces significant problems with convergence:
 - Meshing, element order and tolerance at electrode/electrolyte interface is crucial.
- G.Minton, L. Lue, "The influence of excluded volume and ion polarizability on the capacitance of the electric double layer"

Thanks for listening

Questions?

