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Abstract The assessment of the seismic safety of 

gravity dams is a topic of great importance in 

civil engineering. 

In this paper, fluid structure interaction modeling 

of gravity dams during earthquakes is 

investigated. In particular, this work aims to 

provide physical significance of a plan numerical 

model simulating the dam and the infinite length 

reservoir when a horizontal ground motion acts 

at the dam foundation. 

After a preliminary calibration of the model with 

analytical solutions, the dynamic properties of 

the numerical model are investigated via modal 

and frequency response analyses. 

The fully coupled mechanical-acoustic model is 

also compared to the widespread “added mass” 

model [1] adopted in most national codes. 

Keywords: Fluid Structure Interaction, 

Earthquake Engineering, Gravity Dams. 

1. Introduction

The first attempt at solving the problem of a 

fluid domain under such conditions was 

performed by H. M. Westergaard in 1933 [1]. He 

adopted, for pressure p on the upstream face of 

the dam, the wave equation as a simplification of 

the full Navier-Stokes equation applied to the 

fluid domain: 

(1) 

where c is the sound speed in the water and t is 

the time. The following boundary conditions are 

imposed: 

 rigid reservoir bottom:

 rigid dam upstream face:

 zero pressure at the free water surface:

 Sommerfeld radiation condition upstream of

the reservoir:

√ (   )   , (2) 

where k is the bulk modulus of water. 

The reference system (0, x, y) has the origin at 

the top of the upstream face of the dam with the 

x and y axes pointing upstream and the reservoir 

bottom, respectively. The Author finds the 

following solutions for the displacements ξ and η 

of a fluid particle in the x and y direction: 

   ( ) ∑   ( ) 

   ( ) ∑    ( )  

with: 

√ , 

where w is the specific weight of water, α is the 

ratio of the horizontal acceleration to the gravity 

acceleration g, T is the period of the forcing 

acceleration and h is the depth of the reservoir. 

The values of   that set    to zero, which lead   

to infinity, correspond to the eigenfrequencies of 

the reservoir only: 

(5) 

The Author also proposes an approximation of 

the infinite Fourier series, by a parabolic 

expression in y. In this case, the pressure can be 

represented by horizontal inertial forces exerted 

by masses rigidly attached to the dam. The mass 

distribution is obtained by equating the 

expression of inertia forces to the above-defined 

pressure: 

√ (6) 

This formulation is adopted in various national 

codes, under the name of “added mass” method. 

The Westergaard’s solution is valid only if the 

period of the exciting acceleration is greater than 

the first fundamental period of the reservoir. 

For a perfectly rigid dam, as in this case, an 

analytic solution was developed by Chopra [2], 

[3], for any excitation frequency, and the 

pressure at the upstream face of the dam is given 

by equation (6), where ω is the pulsation of the 

exciting acceleration and λn = (2n-1)π/h. 
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However, there are no analytical solutions 

developed with deformable dam, so it is 

necessary to make use of finite element method. 
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2. The models 
 

The models presented in this work simulate the 

behavior of an Italian dam located in Northern 

Italy, with height of about 50 m and base of 48 

m. The fluid - structure interaction phenomenon 

is modelled by considering the forces and 

accelerations exchanged at the interface between 

the solid and the fluid domains. 

The assumptions of small displacements and 

non-viscous fluid allow a simplification of the 

full Navier-Stokes equations into the 

D’Alembert wave equation, which becomes the 

Helmholtz equation under the hypothesis of 

sinusoidal excitation. 

The 2D models are represented in figure 1 with 

the appropriate boundary conditions. The first 

model simulates the impounded reservoir only, 

the other the fluid with the dam, which is 

considered as rigid or deformable. 

 
Figure 1. The model of the basin only (a) and the 

model of the interacting system (b). 
 

The infinite length reservoir is truncated in both 

cases and the Sommerfeld radiation condition is 

applied in order to model a boundary that does 

not reflect incident plane waves. The method to 

simulate correctly the infinite length basin is 

deeply discussed. Successively, once the model 

has been calibrated through the analytical 

solution for the case of rigid dam, the 

deformability of the structure is introduced. In 

the first phase of the study, in order to discuss 

the more suitable approach to be adopted, the 

first model only is considered. In the second 

phase, in order to model also the reservoir 

sediment absorption effect, the rigid wall 

condition at the bottom is changed to an 

impedance condition and the domain of the dam 

structure is introduced, with the aim to evaluate 

the fluid-structure interaction effect to be 

compared to the traditional model with added 

masses. 

 

3. Use of COMSOL Multiphysics
®
 

 

Two COMSOL
®
 modules are used in the 

simulation: the Solid Mechanics module and the 

Pressure Acoustics-Frequency Domain module, 

which solves the Helmholtz equation for the 

complex acoustic pressure p [4]. 

The materials applied are the standard Water 

material in the COMSOL
®
 library and a concrete 

material with a density ρ = 2400 kg/m
3
, a 

Young’s modulus E = 35 N/mm
2
 and a Poisson 

coefficient ν = 0.33. 

The mapped mesh (figure 1) has 1975 fluid 

quadrilateral elements and 300 solid elements in 

a plane strain formulation, with quadratic shape 

functions. The maximum element size has been 

chosen in order to satisfy the inequality: 

        , where   is the minimum 

wavelength of sound in water, corresponding to 

about 150 Hz. 

As for the model with added masses, the above-

defined mass is modelled as “linear added mass” 

in COMSOL
®
, by defining an analytic function 

for it. A mesh refinement is required in this case, 

in order to improve the discretization of the 

masses. 

A “sound-soft boundary condition” and a 

“sound-hard boundary condition” are applied to 

the water free surface and to the reservoir 

bottom, respectively. A prescribed acceleration 

boundary condition of 0.1 m/s
2
 is imposed at the 

dam upstream face in model (a), whereas an 

acoustic-solid boundary interface is imposed to 

full model (b), in which the prescribed horizontal 

acceleration is applied at the base. 

Some considerations have to be made regarding 

the infinite length of the reservoir, simulated by 
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Sommerfeld radiation condition. The domain is 

extending off to infinity and the wave equation 

has no attenuation over distance, so in order to 

approximate an infinite space, two methods are 

available in COMSOL
®
: the Perfectly Matched 

Layer (PML) and the Plane Wave Radiation 

condition (PWR) are compared in this work. 

The PWR is a Robin boundary condition, a 

linear combination of p and its derivative, and, in 

this case, since no dipole or monopole sources 

are present, it is equal to 

 
 

 
     

  

 
     (8) 

where  is the density of water. Its effectiveness 

is optimal only for incident waves normal to the 

boundary. 

The PML is a complex coordinate stretching of 

the domain that introduces a decay of the 

oscillation without any reflection in the source 

domain, simulating a perfectly absorbing 

material. As suggested by [4], the PML mesh has 

to be assigned so that the mesh sides are directed 

along the radiation. 

The PML settings were a “rational stretching” 

coordinate transformation with “wavelength” left 

at the default setting “by physical interface”, and 

unitary scale factor and curvature parameter. 

In order to use the PML technique, an additional 

domain is created on the upstream side of the 

reservoir. A stationary direct solver is used, and 

modal and frequency sweep between 0.1 Hz and 

100 Hz, with an increment step of 0.1 Hz are run. 

A modal analysis with both PWR and PML 

approaches is performed using model (a). The 

first resulting eigenfrequencies are presented in 

table 1 and compared to the corresponding 

values from analytical solution. 

 

 

Eigenmode 
Analytic (

  

  
) 

[Hz] 

PWR 
[Hz] 

PML 
[Hz] 

1 7.407 7.817 7.407 

2 22.221 22.386 22.222 

3 37.035 37.164 37.036 

4 51.849 51.976 51.851 

5 66.663 66.720 66.667 

Table 1. First eigenfrequency values from analytical 

solution and from the model (a) with PWR and PML 

approaches. 
 

One can observe that the model with PWR is 

affected by an appreciable error in the estimation 

of the natural frequencies of the system, while 

the PML provides an almost exact solution. 

In figure 2 the first two eigenmodes of both the 

PML and PWR approaches are presented. It can 

be seen that with the PWR the pressure 

distribution is not constant in the upstream 

direction and the symmetry condition that 

follows from the hypothesis of infinite reservoir 

is not respected. 

 
Figure 2. The first two eigenmodes of both the PML 

and PWR model. 
 

The surfaces’ height represents the pressure: it 

can be also shown that the pressure distribution 

on the upstream face of the dam is similar to the 

mode shape corresponding to the eigenfrequency 

which is closest to the excitation frequency 

(figure 3). 

 
Figure 3. Pressure distributions on the dam upstream 

face for different values of the exciting frequency. 
 

In figure 4 the response function of the model 

with basin only in terms of base pressure is 

presented in both cases PWR and PML. It can be 

observed that the PML option reproduces exactly 

the analytical solution [2], whereas the PWR 

option introduces noise and spurious peaks. The 

asymptotes, where the magnitude goes to 

infinite, occur at frequencies corresponding to 

the resonance of the reservoir (eq. (5)) and are 
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well matched by the COMSOL
®
 solution only in 

the PML approach. 

It can be observed that the PWR option produces 

“noise” in the frequency response and gives rise 

to secondary spurious peaks when some of the 

longitudinal modes of the truncated domain are 

excited. The application of PML provides 

cleaner results, which are almost exactly 

coinciding with the analytical solution. 

When the absorption due to the sediments at the 

bottom of the reservoir is introduced, the “sound 

hard” boundary condition in COMSOL
®
 is 

substituted by an “impedance” condition, with a 

value of impedance Z: 

     
    

    

  (9) 

where αr is the reflection coefficient, varying 

from 0 (perfect absorption) to 100% (perfect 

reflection). 

 
Figure 4. Pressure at the base of the dam upstream face. Comparison of the analytic solution with Plane Wave 

Radiation and Perfectly Matched Layer models; the purple dashed lines mark the eigenfrequencies of the reservoir. 
 

Figure 5 shows that the absorption drastically 

reduces the amplification at the resonant 

frequencies. 

 
Figure 5 Hydrodynamic pressure at the base of the 

dam in model (a) for different values of the reflection 

coefficient. 

 

In figure 6 the pressure distribution along the 

dam face is plotted for the different values of αr. 

It can be seen that, for values of αr > 0, the 

maximum pressure decreases and no longer 

occurs at the bottom of the reservoir. Therefore, 

it appears more convenient from now on to 

represent the resultant force at the dam base 

instead of the pressure point value. 

 
Figure 6. Pressure distribution in model (a) for an 

exciting frequency of 7 Hz at various values of the 

reflection coefficient. 

 

4. The fluid-structure interaction 

 
After the validation and comprehension of the 

model of the reservoir only, an analysis with 

deformable dam is performed. 

A modal analysis is conducted on the dam body 

only and a frequency response curve with the 

same prescribed acceleration of 0.1 m/s
2 

is 
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obtained. The first eigenmodes of the dam body 

are presented in table 2, along with those 

resulting from the model with added masses. In 

figure 7 the first two modes are represented. It is 

noticeable the mode shapes similarity. The 

response function of the base horizontal reaction 

is represented in figure 8, in comparison with the 

case of the model with added masses. It can be 

seen that the latter model produces a shift to 

lower frequencies of the whole response 

spectrum, without modifying its shape by much. 
 

 
Figure 7. The two first mode shapes for the model 

with dam only (f) and with added masses (f*). 
 

Eigenmode Dam body 

[Hz] 

Dam with added 

masses [Hz] 

1 11.385 9.083 

2 24.562 20.379 

3 27.951 27.020 

4 43.560 35.077 

Table 2. First four eigenfrequency values for the dam 

only and for the model with added masses. 
 

 
Figure 8. Base shear frequency response for the dam 

only (blue) and the model with added masses (green). 

 

In figure 9 the system frequency response in 

terms of total horizontal base reaction (base 

shear) is represented in the following cases: fluid 

domain only (dashed blue curve), rigid dam 

(solid light blue curve), full fluid structure 

interaction (solid blue). It can be observed that 

the reservoir only and rigid dam cases differ by a 

constant value given by dam inertial forces, (in a 

liner-scale plot the two curves would be 

parallel); in both curves the resonance peaks of 

the reservoir only (eq. (5)) are evident. The 

interaction curve shows also a notable amount of 

peaks, in addition to the other cases. 

The same curves reported in figure 9 are plotted 

in figure 10 for different structural damping ξ 

and reflection coefficient αr values (black and 

red curves). It can be seen that the presence of 

structural damping determines a noticeable 

height reduction of the peaks that are generated 

by the resonance of the deformable dam: red 

curves correspond to a greater structural 

damping (ξ=25%) than the black ones (ξ=5%). 

On the other hand, the introduction of the bottom 

sediment absorption effect produces the 

attenuation of the peaks corresponding to the 

basin resonance frequencies, while it does not 

alter the ones of the dam body only. 

This phenomenon allows a sort of identification 

of the peaks, relating each one mainly to the 

reservoir or the dam body. However, a general 

rule cannot be easily defined. In fact, the first 

resonant peak in the surroundings of 10 Hz 

shows a strong coupling between the two physics 

when the structural damping or the reflection 

coefficient is varied, while the peaks at higher 

frequencies display an almost uncoupled 

behavior. 

In figure 11 the full interaction model is 

compared to the model with added masses: it can 

be observed that, for low frequency values, the 

base shear value almost coincides in both cases. 

However the first resonant peak frequency is 

quite similar and the behavior of the system 

differs greatly for higher frequencies. The height 

of the peaks is comparable, but the shift of the 

resonant frequency due to the interaction is not 

accurately represented by the model with added 

masses. In fact, while the shift of the first mode 

could be considered approximately identified, 

the same cannot be said for the other peaks. It 

can be stated that the model with added masses 

cannot reproduce the interaction phenomenon 

because it does not take into account the full 

behavior of the fluid domain. 
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However, such model is able to roughly identify 

the first eigenfrequency of the system and also 

its dynamic behavior al low frequencies, up to 10 

Hz, in the typical range covered by earthquake 

accelerograms. 

A final step to investigate the problem and 

increase the comprehension of the phenomenon 

is taken by analyzing the same model with a 

material sweep over the dam concrete, varying 

the Young modulus E, from 10 to 35 MPa. In 

figure 12 the frequency response of the fluid 

structure interaction for various values of the 

dam’s Young modulus is represented. The 

analysis in this case is performed for a reservoir 

level of 40 m, with a theoretical reservoir 

eigenfrequency of         . The response 

curves of the dam body only are represented with 

dotted lines. It can be seen that a linear increase 

in the elastic modulus value produces a 

corresponding shift of the first frequency of the 

system, which asymptotically approaches to the 

reservoir resonance frequency in a nonlinear 

manner. This behavior is not shown by the 

model with added masses, where the frequency 

shift of the peak remains constant.

 
Figure 9. Frequency response function of the base shear in the cases of reservoir only, rigid dam, and elastically 

deformable dam. 
 

 
Figure 10. Response function for different values of the structural damping and bottom sediment reflection coefficient. 

 

This behavior of the system could not be 

captured with the traditional approach with 

added masses but only with a full multiphysics 

coupling. 

 

5. Conclusions 

 
COMSOL

®
 Multiphysics

®
 has proved to be a 

suitable software to perform frequency response 

analyses of basin-dam interaction. 
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In this work the basin has been modelled with 

the acoustic approach and the problem of 

modelling an infinite reservoir has been 

examined and efficiently resolved by the 

application of the Perfectly Matched Layer 

method, simulating a perfectly absorbing 

domain. The COMSOL
®
 model of the fluid 

domain only perfectly reproduces the analytic 

solution given by Chopra [2]. 

The subsequent modelling of the fluid-structure 

interaction has been then performed providing a 

deep knowledge of the dynamic behaviour of the 

interaction system in sight of the seismic safety 

assessment of gravity dams. Furthermore, this 

study demonstrates that the widespread model 

with added masses is not able to accurately 

represent the dynamic behaviour of the system, 

even though it is suitable to roughly reproduce 

its behaviour in the range of usual earthquake 

frequencies. 

 
Figure 11. Comparison of the response function between the interaction, the model with added masses and the dam 

only model. 

 
Figure 12. Frequency response of the fluid structure interaction for various values of the dam’s Young modulus E 

(solid lines), compared to the dam-only responses (dotted lines). 
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