COMSOL CONFERENCE 2016 MUNICH

FINANCÉ PAR

October 12-14 THE WESTIN GRAND MÜNCHEN

Laboratoire Interdisciplinaire Carnot de Bourgogne

Multiphysical modelling of keyhole formation during dissimilar laser welding

I. Tomashchuk, I. Bendaoud, P. Sallamand, E. Cicala, S. Lafaye, M. Almuneau

Motivations

- Estimate the shape and dimension of a keyhole created during laser welding of dissimilar metallic couples
- Experiments on dissimilar welding show:
 - Melted zones are often asymmetrical
 - Keyhole position to joint line defines global composition
 - Question arises : is a <u>keyhole also asymmetrical to joint line</u>?

Follow the development of the keyhole and the melted zone

Model description

Butt joint configuration

- Pulsed welding (single pulse)
- Continuous welding

	Strong	coupling	between
--	--------	----------	---------

- Heat Transfer
- Laminar fluid flow
- ALE

	316L SS	Ti6Al4V	
Tm (K)	1720	1928	
Abs coef	0.3	0.4	
$\alpha \cdot 10^6$ (m ² /s)	5.58	7.86	

Materials properties as functions of temperature

Model description : heat transfer

• Heat equation
$$\rho c_p^{eq} \left(\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T \right) = \vec{\nabla} \cdot \left(\lambda \vec{\nabla} T \right)$$

- Pulsed beam $q_{L} = \frac{P_{L}A}{\pi r_{0}^{2}} e^{\left(-\frac{x^{2}+y^{2}}{r_{0}^{2}}\right)} \cdot \left(t < t_{pulse}\right)$
- Energy absorption

$$A = A_{solid} + (A_{liquid}A_{solid}) \cdot flc2hs(T-T_m, \Delta T)$$

$$A_{liquid} = A_{surf} + (A_{kh}A_{surf}) \cdot flc2hs(z-z_c, \Delta z).$$

Phase change

$$c_{p}^{eq} = c_{p} + D_{m} L_{m} + D_{v} L_{v}$$

 $D_{i} = \frac{e^{\frac{-(T-T_{i})^{2}}{\Delta T^{2}}}}{\sqrt{\pi \Delta T^{2}}}$

• Continuous beam $q_L = \frac{P_L A}{\pi r_0^2} e^{\left(-\frac{(x+V_w \cdot t)^2 + y^2}{r_0^2}\right)}$

Α	316L SS	Ti6Al4V
Solid	0.3	0.4
Melted	0.15	0.25
Keyhole	0.6	0.7

Model description : fluid flow

Navier-Stokes equation

$$\mathcal{O}_{l}\left[\frac{\partial \vec{u}}{\partial t} + \left(\vec{u}.\vec{\nabla}\right)\vec{u}\right] = \vec{\nabla}.\left[-pI + \mu(T)\left(\vec{u}.\vec{\nabla} + \left(\vec{u}.\vec{\nabla}\right)^{\dagger}\right)\right] + \vec{F}$$

$$\vec{u}$$
 ALE

 $\vec{\nabla}.\vec{u}=0$

Equivalent viscosity

 $\eta = \eta_{solid} + (\eta_{liquid}, \eta_{solid}) flc2hs(T-T_m, \Delta T)$

- Convection forces
 - Natural convection
 - Marangoni effect
 - Surface tension

• Recoil pressure $p_r = a \cdot e^{-\frac{b}{T} + c}$

Homogenous welding : Ti6Al4V

Temps=0 Surface: Température (K) Isovaleurs: Température (K) Flèches en volume: Champ de vitesse (Spatial)

Homogenous welding : Ti6Al4V

Single pulse

Temps=0 s Surface: Température (K) Flèches en volume: Champ de vitesse (Spatial)

Calculation for 3 ms impact with laser power of 1.5 kW.

 $\times 10^{-3}$ $\times 10^{-3}$ 3 0 2.5 -0.5 2 -1 $\times 10^{-3}$ 1.5 -1.5 stee/ 1 1 Ti6AI4V 1 0 y z x 0.5 0 -1 -1

T(K)

×10³

T(K) Single pulse ×10⁻³ $\times 10^{-3}$ 3000 0 -0.5 2500 -1 ×10⁻³ Steel -1.5 2000 TIGAIAV 1500 0 -1 1 1000 More complex function needed for absorption coefficient ? 500

Weld penetration at joint line

Single pulse

- More rapid melting in Ti6Al4V
- Equilibrium melting after several ms

Single pulse : take a look at the keyhole

- Keyhole is shifted at Ti6Al4V side
- Keyhole diameter close to laser beam diameter.
- After several ms this asymmetry disappears.
- Conclusions to be made case by case!

Single pulse : comparison with high speed camera imaging

- Good global representation of matter ejection
- Melted zone forms first on material with higher A_{solid}, but final melt is almost symmetrical

Dissimilar welding : copper/steel

Dissimilar welding : copper/steel

Single pulse 1 kW, 2 ms

- Keyhole is quasitotally shifted on steel side!
- Copper melts by conduction and not by laser absorption.

316L

4

×10³

2.5

2

1.5

0.5

3

×10³

1.93

1.77

 $\times 10^{-4}$

Continuous welding

1.5 kW laser power,
8 m/min welding speed,
laser spot diameter 560 μm

Conclusions

- ALE-based multiphysical model of keyhole formation in case of pulsed and continuous welding between dissimilar materials is proposed.
- First results for pulsed welding were validated for Ti6Al4V/steel couple of materials.
- Dissymmetry of keyhole to joint line is observed only during first seconds of laser-matter interaction.
- Close result for continuous laser welding.
- Lack of data about absorption coefficient!
- Perspective :
 - test on another dissimilar couples
 - interdiffusion of species during melting and solidification

Acknowledgements

- This work is financed by of French Agency of Research : Common Laboratory Program FLAMMe
- Our partner : SME Laser Rhone-Alpes, France
- Our colleagues : Dr Aléxandre Mathieu, Ing Mélanie Duband, ICB, Université Bourgogne-Franche Comté, France

Thank you for your attention!

iryna.tomashchuk@u-bourgogne.fr

ICB/Laser et Traitement des Matériaux

12, rue de la FonderieF-71200 - Le Creusot, France

Laser Rhône-Alpes

5, rue du Rif Tronchard F-38120 - Le Fontanil, France