

Fluid-Structure Interaction Model of Active Eustachian Tube Function in Healthy Adult Patients

Sheer, F.J.¹, Ghadiali, S.N.²

¹Mechanical Engineering Department, Ohio State University, Columbus, OH, sheer.4@osu.edu ²Biomedical Engineering Department, Ohio State University, Columbus, OH, ghadiali.1@osu.edu

COMSOL Conference 2008

Background and Motivation

Reprinted from Bluestone, Charles D, and Klien, Jerome O., <u>Otitis Media</u> <u>in Infants and Children</u> Third edition, W.B. Saunders Company, 2001 Eustachian Tube (ET) connects the Middle Ear to the Nasopharynx.

ET has three primary functions:

- •Drainage of ME fluid
- •Equilibrate ME pressure
- •Protect ME from Pathogens

ET dysfunction has been directly linked to Otitis Media.

Otitis Media has an annual healthrelated cost of \$4 billion dollars in the US. [1]

Modeling Goals

In the clinics, we can perform a diagnostic procedure called a Forced Response Test (FRT)
Patient is hooked up to experimental apparatus shown above and asked to swallow

•First Goal: Create a transient COMSOL model that can replicate FRT results to serve as model validation

•Use validated model to explore other parameters involved in ET function

Experimental Data

Structure of the Eustachian Tube

Final Analyzed 3D Geometry

Solid Mechanics Properties

Both Cartilage and Glandular Tissue are represented by Mooney-Rivlin Hyperelastic material models.

$$E_{\text{cart}} = 300 \text{kPa} [2,3] \qquad E_{\text{Gland}} = 50 \text{kPa} [2,3]$$

$$\kappa = \frac{E}{3(1-2\nu)} \qquad C_1 = \frac{E}{4(1+\nu)}$$

$$W_{hyp} = C_{01} (\bar{I}_2 - 3) + \frac{1}{2} \kappa (J-1)^2$$

$$P = \frac{\partial W_{hyp}}{\partial \nabla \mathbf{u}} \text{ where } \mathbf{u} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Solid Boundary Conditions

- **Boundary Conditions:**
- •Attachment of ET to the cranial
- base of the skull
- •Attachment of soft tissue to the bony portions of the ET at the proximal and distal ends

Applied Loads:

- Tensor Veli Palatini (TVP) muscle force
- Levator Veli Palatini (LVP) muscle force
- Fluid forces

Solid Boundary Conditions (cont)

-0.005 x 1e-3 All TVPM load vectors point to the position of the Pterygoid Hamulus All LVPM load vectors are normal to the applied surface

Solid-Fluid Coupling

Arbitrary Lagrange-Eulerian (ALE) equations

$$\frac{\partial^2 x_i}{\partial X_j^2} = 0 \quad \text{where} \quad x_i = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \& \quad X_j = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

In the Solid Domain, fluid force is applied on the interface boundaries In Fluid Domain, velocities from solid deformation is applied to interface boundaries

$$T_{x} = \sigma n_{x} = (-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}))n_{x}$$
$$T_{y} = \sigma n_{y} = (-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}))n_{y}$$
$$T_{z} = \sigma n_{z} = (-p\mathbf{I} + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}))n_{z}$$

 $u_{2} = \frac{\partial u}{\partial t}$ $v_{2} = \frac{\partial v}{\partial t}$ where $w_{2} = \frac{\partial w}{\partial t}$

u, v, and w are the solid displacements and u₂, v₂, and w₂ are the fluid velocities

Fluid Domain

Due to the complexity of the geometry, a coarse, tetrahedral mesh is used with high order elements to accommodate the large displacements without any element collapse.

Incompressible Continuity and Navier-Stokes equations

$$\rho \frac{\partial v_i}{\partial x_i} = 0$$

$$\rho \frac{\partial v_i}{\partial t} + \rho v_j \frac{\partial v_i}{\partial x_i} = -\frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 v_i}{\partial x_i \partial x_j}$$
where $v_i = \begin{bmatrix} u_2 \\ v_2 \\ w_2 \end{bmatrix}$

Fluid equations are solved in the moving reference frame!!

Model Results

Model Troubles:

- •Static solutions only
- •Model unstable
- •Fictitiously viscous fluid domain
- •Solid \rightarrow Fluid coupling only

$$\varepsilon_{eff} = \sqrt{\frac{2}{3}(\varepsilon_X^2 + \varepsilon_Y^2 + \varepsilon_Z^2) + 2(\varepsilon_{XY}^2 + \varepsilon_{XZ}^2 + \varepsilon_{YZ}^2)}$$

Test Model

Anatomically correct x 1e-3 lumen opening Lumen opening surrounded by cylinder of cartilage Cylinder is loaded with a uniform, outward radial -0.005 force to expand lumen opening. -0.01 x 1e-3 -0.015 XZZ

Test Model Results

Test Model Results

Future Work

Fluid-mucosa layer

ME or bronchi

Incorporate a viscoelastic material model for the Fatty Tissue Ε, E, η

Simulate the drainage/flow of highly viscous mucus through the ET

> Resistance to Airflow (mmH₂O/cc/min)

Soft tissue elements

Nasal Cavity

or Alveoli

U

Through the use of Steered Molecular Dynamics, create a multiscale model which includes molecular adhesions

TF.

≶Ε

щĻ

Acknowledgments

This work was supported by NIH 5R01DC007230 and NIH 5P50DC007667.

References

- 1. Bondy, J., et al., *Direct expenditures related to Otitis media diagnoses: extrapolations from a pediatric medicaid cohort*. Pediatrics, 2000. **105**:p. 72
- 2. Hung, C.T., et al., *A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng*, 2004. **32: p. 35-49.**
- 3. Krouskop, T.A., et al., *Elastic moduli of breast and prostate tissues under compression*. Ultrason Imaging, 1998. **20: p. 260-327.**