COMSOL CONFERENCE 2016 BOSTON

Modeling of the Singlet Oxygen Distribution in Photofrin-Photodynamic Therapy of the Plural Cavity

Rozhin Penjweini, Michele M Kim, Timothy C Zhu

Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

Photodynamic Therapy (PDT)

Obtaining Pleural Cavity Geometry

Delivered Light Fluence

Organs at Risk

Material and Mesh Properties

 Table 1. Lung stress-strain material properties

	Poisson's	Young's modulus	Density	
	value	(kPa)	(kg/m³)	
Pleural Cavity	0.36	3	242	

 Table 2. Element statistics of the tetrahedral mesh generated for the geometry

	Element Number	Min element quality	Average element quality	Element volume ratio	Mesh volume (cm ³)	Max growth rate	Mean growt h rate
Patient	56052	0.09	0.69	2.93×10 ⁻⁷	2631	4.45	1.85

Mathematical Simulations of PDT

$$\frac{d[{}^{3}O_{2}]}{dt} + \left(\xi \frac{\phi[S_{0}]}{[{}^{3}O_{2}] + \beta}\right)[{}^{3}O_{2}] - g\left(1 - \frac{[{}^{3}O_{2}]}{[{}^{3}O_{2}](t=0)}\right) = 0$$

$$\frac{d[S_0]}{dt} + \left(\xi\sigma \frac{\phi([S_0] + \delta)[{}^3O_2]}{[{}^3O_2] + \beta}\right)[S_0] = 0$$

$$\frac{d[{}^{1}O_{2}]_{rx}}{dt} - \left(\xi \frac{\phi[S_{0}][{}^{3}O_{2}]}{[{}^{3}O_{2}] + \beta}\right) = 0$$

Photochemical Parameters

Parameter	Definition	Value	
$(\mathrm{cm}^2\mathrm{s}^{-1}\mathrm{mW}^{-1})$	Specific oxygen consumption rate	3.7×10^{-3}	
σ (μM^{-1})	Specific photobleaching ratio	7.6 ×10 ⁻⁵	
β (μM)	Oxygen quenching threshold concentration	11.9	
δ (μM)	Low concentration correction	33	
g (µM/s)	Maximum oxygen supply rate	0.76	
[³ O ₂] ₀ (µM)	Initial ground-state oxygen concentration	40	

Photosensitizer Distribution

Singlet Oxygen Simulation

Conclusion

- In the ongoing clinical trial, the prescribed light fluence dose for Photofrin-PDT for mesothelioma is 60 J/cm². The magnitude of the delivered fluence changes from 54.5 to 73.6 J/cm² on the surface of the pleural cavity.
- The distribution of [¹O₂]_{rx} during PDT was simulated and mapped on the treated plural cavity by using COMSOL.
- We believe that in situ monitoring of the under- and overexposed regions to [¹O₂]_{rx} can significantly improve the treatment.

PDT Group at UPenn

Physics

- Timothy Zhu
- Jarod Finlay
- Arjun G. Yodh
- Sophie Chung
- Carmen Rodriguez
- Andrea Dimofte
- Michele Kim
- Rozhin Penjweini
- Arash Darafsheh

Biology, Medicine, Chemistry

- Theresa M. Busch
- Keith Cengel
- Charles B Simone
- Jess Appleton
- Sally McNulty
- Joann Miller
- Min Yuan
- Sunil Singhal

Thank you

COMSOL CONFERENCE 2016 BOSTON