Advanced Computational & Engineering Services

Simulation of Manufacturing Process of Ceramic Matrix Composites

Jeffrey S. Crompton, Kyle C. Koppenhoefer, Sergei Y. Yushanov ACES of Columbus.

Simulation of Manufacturing Process of CMCs

- Background
- Problem statement
- Analysis structure
- Validation studies

Ceramic Matrix Composites

- Ceramic matrix reinforced with continuous or discontinuous reinforcement
- Reinforcement:
 - Whiskers, particles, fibers
 - Oxide and Non-oxide CMC
 - Eg: SiC_w/Si_3N_4 , C/C, C/SiC, SiC/SiC, Al_2O_3

Motivation - CMCs

Demand

- Increased T_{operation}
- Eliminate cooling
- Decreased weight

Result➤ Increase performance➤ Improved fuel efficiency

•

Rocket Propulsion

adapted from GE

OptionOpportunity• Ceramics►Inherently brittle►Composites (CMCs)

CMC Applications

- Aerospace
 - Rocket propulsion, Aeroengine
- Defense
 - Armor
- Automotive
 - Brakes
- Industrial
 - Tooling, Turbines
- Nuclear

Α

- Fusion, Fission

CMC Processing

- Gas phase
 - Chemical vapor infiltration (CVI)
- Liquid phase
 - Polymer impregnation and pyrolysis (PIP)
 - Reactive melt infiltration (RMI)

CMC Processing: RMI

- RMI
 - Liquid impregnation of porous preform
 - Quick
 - Low porosity
 - Thick sections

CMC Processing: RMI

A

RMI Analysis

- Analytical tool to:
 - Incorporates interdependent multiphysics of RMI
 - Identify critical parameters
 - Optimize production process
 - Predict process parameters for complex geometries
 - Minimize process development time

RMI Problem Statement

Strongly coupled : Highly non-linear : Limited experimental data

Analysis structure

- Unsaturated flow of Si through porous C matrix:
 - Richard's Equation
 - Darcy's Equation
- Reaction kinetics for: Si + C \rightarrow SiC
- Volume change for: Si + C \rightarrow SiC
- Heat transfer
 - Molten Si infiltrating porous C preform
 - Thermal evolution for: $Si + C \rightarrow SiC$
- Stress analysis for residual stress/distortion
- All equations solved simultaneously using a concurrent multiphysics methodology

Unsaturated Flow - Velocity

,

Α

S

Residual Stress Distribution

A

S

Validation studies

- Limited experimental data
- Previous analytical data
 - Einset
 - Nelson
- Validation parameters:
 - Reactive flow
 - Non-reactive flow

Validation – Nonreactive Flow

A

S

Validation – Nonreactive Flow

A

C

Validation - Analysis

A

9

Validation – Reactive flow/reaction

A

Validation - Temperature

Effect of Reaction Heat 2050 2050 t = 1.0 s t=1.0 s Einset Einset 2000 2000 $\Delta H = 8.75 \cdot 10^4 \, J/kg$ $\mathbf{B} = \mathbf{k}_{\mathbf{P}}$ $\Delta H = 10.0 \cdot 10^4 \, J/kg$ $\mathbf{B} = 2\mathbf{k}_{\mathbf{P}}$ $\mathbf{B} = 5\mathbf{k}_{\mathbf{p}}$ 1950 1950 Temperature [K] 1820 1820 Temperature [K] 1900 1850 1800 t = 6.0 s t = 6.0 s 1800 1800 t = 22.0 s t = 22.0 s 1750 1750 1700 1700 1650 1650 2 1 2 3 5 6 0 1 3 4 5 6 4 7 Distance from Inlet [cm] Distance from Inlet [cm]

Effect of Thermal Conductivity

S Ξ

A

Summary

- Concurrent multiphysics solution implemented in COMSOL Multiphysics
- Experimental and numerical data available for comparison for front position and temperature
- Results of current analysis compare favorably with previous work and experimental data

Advanced Computational & Engineering Services

 Current analyses extend to include critical phenomena previously not included