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Abstract: We utilized COMSOL with Matlab to 
develop a time dependent computational model 
of semi-infinite air bubble progression in a liquid 
filled channel. This microbubble flow model 
accounts simulates the continual interfacial 
expansion dynamics observed during the 
opening of collapsed pulmonary airways. We 
successfully simulated a wide range of capillary 
numbers (10-4 < Ca < 1) an at lower Ca than 
those used in our previous published boundary 
element models (BEM). Simulation results are 
compared to the low capillary asymptotic 
predictions of Bretherton, who found that the 
trailing film thickness varied as 𝐶𝑎2/3  for 
𝐶𝑎 < 2 ∗ 10−3. Our COMSOL based model also 
accurately matched our previously published 
BEM results at 10−2 < 𝐶𝑎 < 101 . This 
validated COMSOL model will be used in the 
future to simulate complex fluid-structure 
interactions between the microbubble and the 
soft tissue/biological cells surrounding the 
airway. 
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1. Introduction 
 
Acute respiratory distress syndrome (ARDS) is a 
severe lung disease caused by a variety of direct 
and indirect insults. It is characterized by 
inflammation of the lung parenchyma leading to 
impaired gas exchange with concomitant 
systemic release of inflammatory mediators 
causing inflammation, hypoxemia and frequently 
resulting in multiple organ failure. The main 
treatment for ARDS is mechanical ventilation. 
The ventilation of fluid filled lungs involves the 
propagation of microbubbles over a layer of 
epithelial cells as shown in Figure 1. 
Unfortunately, experimental studies{1,2,6} have 
demonstrated that the large shear and normal 

stresses generated by microbubbles cause 
significant cellular deformation and injury. As a 
result, the mortality rates for ARDS remain high 
(~30-40%). The overall goal of our lab is to 
develop novel treatments for ARDS that 
minimize the amount of cellular deformation and 
injury caused by microbubble flows. However, 
experimental techniques are currently limited in 
their ability to monitor both the stresses 
generated by microbubbles and the cellular 
deformations caused by microbubbles. The goal 
of the current study is to develop computational 
models that accurately characterize the 
microbubble flows that exist during experimental 
conditions and to develop a model that can be 
extended in the future to simulate cell 
deformation during microbubble flows. 
 

 
Figure 1: A schematic diagram of fluid stresses 
applied to epithelial cells during airway reopening. 
 
Different computational techniques such as the 
Boundary Element Method (BEM) have been 
utilized by our lab in the past{3,4,5} to 
characterize the fluid mechanics of microbubble 
flows. However, the BEM has several limitations 
that do not allow for the simulation of 
experimental conditions. First, the BEM cannot 
simulate the very low capillary numbers 
(𝐶𝑎 < 10−3) observed in the experiments. Ca is 
a dimensionless bubble velocity that represents 
the ratio of viscous to surface tension forces. At 
very low Ca, the microbubble lays down a very 
thin film of fluid and singularities associated 
with BEM cause numerical instabilities in this 
film. In addition, BEM is only valid for zero 
Reynolds number flows (i.e. Stokes flow) while 
experimental Reynolds numbers are O(1). Other 
investigators{7,8} have used the finite element 
method to obtain results at 10−4 < 𝐶𝑎 < 101 , 
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and our goal is to used the COMSOL with 
MatLab software package to simulate very low 
Ca microbubble flows and to characterize the 
shear and normal stresses exerted by these flows.  
 

2. Model Formulation 
 
2.1 Governing Equations  

 
In this paper, we used COMSOL to model one 
half of a semi-infinite bubble propagating in a 
rigid 2D channel.  The incompressible Navier-
Stokes fluid application mode is used to solve 
the problem. Starting with the momentum 
balance in terms of stresses, the generalized 
equation in terms of transport properties and 
velocity gradients are: 
 
𝑅𝑒

𝜕𝑈

𝜕𝑡
− ∇ ∙ [𝐶𝑎(∆𝑈 + (∆𝑈)𝑇)] + 𝑅𝑒(𝑈 ∙ ∇)𝑈 +

∇P = 𝐹                                                              (1)                                                                                          
∇ ∙ U = 0                                                                   (2)                                                                                                                                                         
 
The first equation is the momentum transport 
equations, and the second is the equation of 
continuity for incompressible fluids.  We are 
using dimensionless variables here, where 𝑅𝑒 is 
Reynolds number, 𝑅𝑒 =

𝜌𝑈𝐷

𝜇
, 𝐶𝑎  is capillary 

number,  𝐶𝑎 =
𝜇𝑈

𝛾
,  𝑃  is the dimensionless 

pressure,  𝑃 =
𝑝

𝛾/𝑎
 , 𝜇  is the fluid kinematic 

viscosity, U is the bubble tip velocity at steady 
state, 𝜌 is the density, γ is the surface tension, 𝐹 
is a volume force field such as gravity and a is 
the channel half-height. Our model incorporates 
a sub program written in MatLab which 
calculates the interfacial curvature in order to 
apply accurate boundary conditions at the air- 
liquid interface. The main force acting on the air-
liquid interface is surface tension, which is 
directly related to the pressure drop according to 
Laplace's law: 
 
∆𝑃 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 𝜅                                      (3) 
 
Here ∆𝑃 is the pressure drop across the interface, 
𝑃𝑖𝑛  is the pressure inside the microbubble,  𝑃𝑜𝑢𝑡  
is the outside fluid pressure, κ is the curvature of 

the interface. Our subprogram calculated the 
curvature using the following equations in 
Cartesian coordinates: 
 

𝜅 =
𝑑𝑥

𝑑𝑠
∙
𝑑2𝑦

𝑑𝑠2−
𝑑𝑦

𝑑𝑠
∙
𝑑2𝑥

𝑑𝑠2

((
𝑑𝑦

𝑑𝑠
)2+(

𝑑𝑥

𝑑𝑠
)2)3/2

                                                  (4)                                                                                                                                         

𝑛𝑥 = −
𝑑𝑦

𝑑𝑠

((
𝑑𝑦

𝑑𝑠
)2+(

𝑑𝑥

𝑑𝑠
)2)3/2

                                           (5)                                                                                                                                    

𝑛𝑦 =
𝑑𝑥

𝑑𝑠

((
𝑑𝑦

𝑑𝑠
)2+(

𝑑𝑥

𝑑𝑠
)2)3/2

                                               (6)                                                                                                                                        

                         
Where 𝜅 is the interface curvature, x and y are 
the coordinates, s is the arc-length of the 
interface, 𝑛𝑥  is the normal vector in x direction 
and  𝑛𝑦  is the normal vector in y direction. The 
current model can simulate a wide range of 
capillary numbers (i.e. 10-4 < Ca < 101)  and uses 
the ode113 MatLab routine to solve the interface 
equation of motion. 
 
𝑑𝑌  

𝑑𝑡
=  𝑢  ∙ 𝑛  𝑛     where  𝑌  = 𝑥𝑖 + 𝑦𝑗 , 𝑢  = 𝑢𝑥 𝑖 +

𝑢𝑦 𝑗 , 𝑛 = 𝑛𝑥 𝑖 + 𝑛𝑦 𝑗 .                               (7)
                           
2.2. Model Domain 
 

The use of the COMSOL GUI environment 
allows for fast and simple post processing of the 
results. It is also easy and convenient to set up a 
problem and solve. However, we found that 
special subprograms must be implemented in the 
COMSOL with MATLAB environment to 
provide accurate boundary conditions and 
solutions.  
 
A schematic of the fluid boundary and the 
location of the imposed boundary conditions in 
the lab frame are shown in figure 2. Table 1 
defines the boundary condition for this problem 
and figure 3 shows a schematic finite element 
mesh. There are basically 3 types of boundary 
conditions. Boundary 1 is a parabolic flow 
profile with a flow rate that ensures a 
dimensionless tip velocity of 1 at steady-state. 
Boundary 3 and boundary 4 only have x 
direction constant velocity (i.e. no slip). 
Boundary 5 to 64 have an unknown velocity, so 
we define a curvature based stress boundary 
conditions on these surfaces. Figure 3 shows a 
schematic of the model with meshe at 𝐶𝑎 = 0.1. 
 



 
Figure 2: A schematic of the fluid boundary and the 
location of the imposed boundary conditions.  

 
 
 

Boundaries Boundary conditions 
1 Parabolic flow, U=3aβ/2 (𝑦2 −

1), v=0 
2 symmetry  
3 𝑢 = 0, v=0 
4 𝑢 = 0, v=0 
5-64  
Table 1: Description of boundary conditions 
 

 
Figure 3: A schematic of the model with meshes at 
𝐂𝐚 = 𝟎. 𝟏. 

 
3. Simulation Results 
 
2.1 Convergence   

 
For our simulations, we specify a relative error 
tolerance of 10−6and time steps of ∆𝑡 = 0.01 in 
the ODE solver. The maximum normal velocity 
in the bubble-tip reference frame is used to check 
for steady-state convergence. Specifically, as the 
air liquid interface converges to a steady shape in 
the bubble fixed frame, the maximum normal 
velocity will tend to zero since in the bubble-tip 
reference frame the interface does not deform at 
steady-state. Figure 4 show the maximum 
normal velocity convergence plots for capillary 
numbers of 0.5 and 0.005. The convergence for 
the higher capillary number is smoother than the 
lower capillary number all solutions converge to 
maximum normal velocities less than 10-3. Since 
the starting capillary for all the simulations is 
𝐶𝑎 = 0.001, it takes different time steps for  the 
simulations to reach steady state at a given Ca.  

 

 
(a) 𝐶𝑎 = 0.5 

(b)  𝐶𝑎 = 0.005 
 

Figure 4: Convergence plots of due to the change of 
capillary numbers for (a) 𝐶𝑎 = 0.5  and (b)  𝐶𝑎 =

0.005 in the bubble fixed frame with ∆𝑡 = 0.01. 
 
 
Figure 5 demonstrate changes in the thin film 
thickness with respect to time. The starting 
capillary number is 0.001, the finger width for 
𝐶𝑎 = 0.5 will decrease because of the change of 
capillary, however, the finger width for 𝐶𝑎 =
0.0005  will increase with the decreasing 
capillary. 
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(a) 𝐶𝑎 = 0.5 

 
(b) 𝐶𝑎 = 0.0005 

 
Figure 5: Thin film thickness change due to the 
change of capillary numbers for (a) 𝐶𝑎 = 0.5 and  (b) 
𝐶𝑎 = 0.0005. 
 

 
Figure 6: Interface change from the steady state 
for 𝐶𝑎 = 0.1  to 𝐶𝑎 = 0.0001  due to the flow rate 
change. 
 
Figure 6 shows the air liquid interface change 
when 𝐶𝑎 decreases from 0.1 to 0.0001. We can 

clearly find the thin film thickness decreases 
with the decreasing of the capillary number. 
When the capillary goes to 0.0001, the film 
thickness becomes very thin.   
 
2.2 Other Results   

 
Figure 7 shows the flow field surrounding the 
semi-infinite air bubble for a given capillary 
number as a function of time. The streamlines 
are drawn in the lab reference frame. In addition 
to flow visualization, this figure also shows how 
the interface shape and thin film thickness 
change with time. 
 

 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 7: Diagram of the flow field surrounding 
the air liquid interface for  𝐶𝑎 = 0.1 at different 
time steps (a) t=0, (b) t=1, (c) t=3 and (d) t=5, 
the streamlines are drawn in the lab frame. 
 
4. Verification 
 
In order to validate our FEM based simulations 
of microbubble flows, we compare our results 
with both an asymptotic analysis first performed 
by Bretherton {9} as well as previous results 
from our group obtained with the Boundary 
Element Method{4}.  
 
For small 𝐶𝑎, Bretherton showed that 
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  𝛿 → 1.337𝐶𝑎2/3 𝑎𝑠 𝐶𝑎 → 0   (8) 
 
 
where 𝛿  is thickness of the thin fluid film which 
trails the progressing air bubble. Here we first 
compare Bretherton’s analytical predictions for 

𝛿  with measurements of 𝛿  obtained with our 
COMSOL model. However, it is well known that 
the Bretherton’s result, i.e. Eqn (8), is only valid 

in the limit of small Ca (i.e. Ca < 2 ∗ 10−3 ). 
Therefore, we also compare our COMSOL 
model with previous measurements of δ obtained 

in our lab with the Boundary Element Method 
(BEM). Since the BEM is only valid at very low 
Reynolds number we specify a Reynolds number 
of 10-5 in our COMSOL verification simulations. 
In addition, singularities in the BEM do not 
allow for accurate solutions at Ca < 10-2 and we 
therefore only make COMSOL – BEM 
comparisons at Ca > 10-2. 

 
 
  
Figure 8: Comparison of the finger width with 
Bretherton’s asymptotic predictions and 

Boundary Element Method data, x and y axis are 
in Log scale. 
     
Figure 8 shows our COMSOL simulation results 
(filled triangles) for the film thickness, δ, from 

the lowest capillary number 𝐶𝑎 = 0.0001 to the 
highest capillary number 𝐶𝑎 = 1.  As expected, 
the film thickness was found to decrease with 
decreasing 𝐶𝑎.  In addition, the comparisons 
between our COMSOL simulations and 
Bretherton’s predictions at low capillary 
numbers are all within 0.12% relative error while 
comparisons with the BEM solutions at higher 
capillary numbers are all within 0.15% relative 
error. We therefore conclude that our COMSOL 

simulations accurately match both analytical 
solutions and solutions obtained with other 
computational techniques.  

 
5. Applications 

 
Since we have verified these models through the 
comparison with other numerical methods, next 
we plan to use COMSOL with MatLab system to 
develop a fluid-structure interaction model that 
can accurately simulate cellular deformation 
during microbubble flows. As shown in Figure 1, 
there are epithelial cells on the channel wall 
during the bubble progression. There will be 
hydrodynamic stresses acting on epithelial cells, 
which will cause an imbalance of stresses along 
the cell, resulting in cell deformation and 
accordingly cell membrane injury during the 
airway opening. Through the analysis of the 
shear and normal stress, we could have a good 
understanding of the cell injury and cell death. 
 
6. Conclusions 
 
COMSOL with MATLAB provides a very 
flexible environment in which it is easy to 
implement specific subroutines written by our 
lab that accurately calculate interface curvature 
and movement. It was found to be capable of 
simulating two phase displacement in a channel 
for a wide range of capillary numbers much 
larger than our previous studies. Especially for 
those low capillary numbers that exist in the 
experiment. The lowest capillary number used 
here is 𝐶𝑎 = 0.0001, but we are quite sure that 
we can still lower this number if needed.  The 
simulation results are in excellent agreement 
with Bretherton’s asymptotic predictions and 

Boundary Element Method, which validates our 
numerical method.  As a result, we are able to 
obtain very accurate and stable solutions at very 
small capillary numbers compared to other 
methods during the simulation of the air liquid 
bubble interface movement.  We plan to use 
these models to analyze experimental results and 
to extend this model in order to simulate cellular 
deformation and injury caused by microbubble 
flows.  
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