

MODAL ANALYSIS OF MICROCANTILEVER USING VIBRATION SPEAKER

M SATTHIYARAJU 1 , T RAMESH²

*¹Research Scholar, Department of Mechanical Engineering, National Institute of Technology, Trichy ²Assistant Professor, Department of Mechanical Engineering, National Institute of Technology, Trichy ¹nittsathya@gmail.com, ²tramesh@nitt.edu

INTRODUCTION:

Dynamic Characteristics of Microcantilever Beam and Glass Fiber for resonance frequencies and mode shapes have been found using vibration speaker.

RESULTS AND DISCUSSION:

Analytical, Experimental and Simulation Results

Fig. 1 Dynamic-mode Cantilever Sensing Principle

THEORITICAL MODEL OF MICROCANTILEVER: Natural Frequency of cantilever for the rectangle geometry,

At Atmospheric air

At Vacuum

NUMERICAL SIMULATION USING COMSOL:

Microcantilever has been analyzed using Eigenfrequency study and resonance frequencies and mode shapes are identified.

Mode Shape 1	39.157	39.306	41
Mode Shape 2	245.4	246.462	249
Mode Shape 3	687.133	690.729	695

MODE SHAPES COMPARISION:

Beam Dimensions & properties:

Material : Stainless Steel

 $L=35000\mu m, w = 1000\mu m \&$ $t = 30 \mu m, E = 200 GPa,$

 $v = 0.33, \rho = 7850 \text{kg/m}^3$

Fig. 2 COMSOL Cantilever Model

EXPERIMENTAL WORK:

Excerpt from the Proceedings of the 2016 COMSOL Conference in Bangalore