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Abstract: As gas turbine engine turbine 

temperatures and component life requirements 

continue to rise, it becomes increasingly 

important to have a good understanding of the 

operating temperatures of turbine components. 

Recent work has explored the possibility of 

approximating the leading edge stagnation heat 

transfer coefficient through analogy with the 

Hiemenz flow solution for stagnating plane flow 

in front of a flat wall.  The objective of this study 

was to set the framework for an exploration into 

whether a Hiemenz flow approximation based on 

measured static pressures near an airfoil leading 

edge can provide a good estimate of the leading 

edge heat transfer coefficient. To achieve the 

stated objective, the Hiemenz solution was 

reproduced using MATLAB in order to obtain a 

reliable baseline for comparison. Finite element 

and finite volume CFD solvers COMSOL and 

FLUENT, respectively, were each used to 

produce numerical solutions of the same problem 

and the results compared.  
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1. Introduction 
 

The two-dimensional plane flow of an inviscid 

incompressible fluid approaching a wall is 

shown in Figure 1. The wall is located at y=0, 

while x=0 is a symmetry plane. The stagnation 

point is at the origin. The fluid moves towards 

the wall from the positive y-direction and is then 

deflected by it and moves along the positive x-

direction. 

 

 
Figure 1. Velocity field near a stagnation point for the 
planar laminar flow of an inviscid incompressible 

fluid. 

 

 

This flow can be solved analytically and the 

solution, in terms of the stream function is given 

by axy=ψ [1]. This solution for inviscid flow 

in the vicinity of a stagnation point is the basis 

for the derivation of the similarity flow solution 

for the flow of a viscous fluid in the same 

situation.  As outlined in [2,3], the inviscid 

stream function is modified so that the no-slip 

condition at the wall can be satisfied and one 

writes instead ( )yaxfviscous =ψ , where the 

function f depends only on the coordinate y. 

Hence, once values for f(y) have been 

determined, the velocity and pressure 

distributions for the viscous case can be 

determined.   

 

The velocity components can be described in 

terms of the function f:  
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Excerpt from the Proceedings of the COMSOL Conference 2008 Boston



The pressure distribution can be described as 

follows, introducing the function F(y): 
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If the stagnation pressure p0 is taken as the 

pressure at the stagnation point, where x=y=0, 

we can extract the condition: 

( ) 0
0
=
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The incorporation of the above together with the 

no-slip condition and the Navier-Stokes 

equations yields Hiemenz equation for the 

dimensionless function  )(ηφ  : 
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Here ν  is the kinematic viscosity of the fluid. 

Hiemenz equation is a third order, non-linear 

ordinary differential equation that must be solved 

subject to the following boundary conditions: 
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 No analytical solution of the above problem is 

possible; therefore a numerical method must be 

used as described below. 

 

2. Methodology 
 

The boundary value problem described in the 

previous section is solved by first transforming 

the original equation into a system of first order 

ordinary differential equations than are then 

solved using a fourth order Runge-Kutta method 

combined with shooting within the MATLAB 

environment [4]. The results obtained using this 

procedure were in excellent agreement with 

previously published results and are used as our 

baseline for comparison against predictions 

using COMSOL and the CFD program 

FLUENT. Utmost care had to be used to ensure 

the far-field conditions in these simulations 

matched those used in the original method.  

 

 

Both COMSOL and FLUENT [5] flow solvers 

were used to develop models of the viscous flow 

field in the case of a 2-dimensional, steady, 

incompressible viscous flow with constant 

properties.  Selection of appropriate domain and 

boundary conditions are essential to obtaining a 

solution consistent with the results obtained from 

the Hiemenz equation. Several variations on the 

geometry and boundary conditions were 

investigated.  

 

Each of these cases resulted in streamlines and 

pressures that were qualitatively consistent with 

the analytical solutions.  However, pressure 

magnitudes did not generally agree well with the 

Hiemenz solution. 

 

The most successful case for the purposes of 

comparison was one in which the domain was 6 

meters by 6 meters, and inlet and exit boundary 

conditions were specified so as to be consistent 

with the boundary conditions used in the 

analytical case. The domain size of 6 was 

sufficient to ensure that the boundaries were 

effectively at far field; i.e. the velocities should 

have asymptotically achieved their far-field 

character by the boundaries of the domain.  This 

was established based on the viscous exact 

solution, for which 99% of far-field conditions 

are achieved at 3 units from the wall. The 

COMSOL and FLUENT meshes used are shown 

in Figures 2a and 2b, respectively. 

 

 



 
 

Figure 2a. Mesh used in the COMSOL model. 

 

 
 

Figure 2b. Mesh used in the FLUENT model. 

 

For the computations, the inlet velocity was set 

such that U = x and V=-5.3521 (m/s). The inlet 

x-velocity comes from the boundary condition 

axU =  far from the wall, and the inlet y-

velocity was based on the results of the viscous 

(Hiemenz) solution. The specified inlet x-

velocity defines the final parameter, a, required 

to ensure that the case is properly non-

dimensionalized ( 1=a s
-1
).  The inlet y-velocity 

is equal to the analytical prediction at y=η=6. 

The density was set to 1 kgm
-3
 and viscosity was 

set equal to 1 kgm
-1
s
-1
. These values simplify the 

comparison between the analytical and numerical 

results.  Selecting this set of initial conditions 

and material properties ensures that the 

numerical values of the dimensionless function 

)(ηφ  are equivalent to those of the dimensional 

function f(y), and that the values of the 

dimensionless coordinate η and the dimensional 

y are also equal. (The dimensions of both y and 

f(y) are meters).  The exit pressure was specified 

so as to be consistent with the analytical 

prediction at x=6, given a reference pressure p0 

of 100 Pa. 

 

3. Results  
 

The velocity fields computed using COMSOL 

and FLUENT are shown in Figures 3a and 3b, 

respectively. The velocity fields predicted by 

these 2 codes are nearly identical, with a 

maximum value of 8.04 m/s in each case.  This 

maximum value is also consistent with the 

viscous analytical solution, which is (u,v)=(6,-

5.3521) at the corner (x,y)=(6,6). This velocity 

magnitude of 8.04 m/s is slightly lower than that 

predicted by the inviscid solution, 8.49 m/s. 

 

Figure 3a. Velocity field computed with COMSOL. 

 

 

Figure 3b. Velocity field computed with FLUENT. 

 

The pressure fields computed by COMSOL and 

FLUENT are shown in Figures 4a and 4b, 



respectively.  They are both close in shape to the 

analytical solution, and in each case indicate a 

stagnation pressure very close to the specified 

value of 100 Pa.  The contours are, however, 

slightly different between the 2 codes.  This 

could be attributable to several factors, including 

differences in mesh density (which is visible in 

Figures 2a and 2b); the discretization of applied 

boundary condition profiles, which was 

comparable to the mesh density in the FLUENT 

case but finer than the COMSOL case, or 

perhaps to solver differences.   

 

Figure 4a. Pressure field computed with COMSOL. 

 

 

Figure 4b. Pressure field computed with FLUENT. 

Figure 5, shows the computed pressure 

distributions along the symmetry line and in 

close proximity to the wall for the four models 

considered (namely, the inviscid case, Hiemenz, 

COMSOL and FLUENT). The figure shows that 

there is very good agreement between the 

Hiemenz and COMSOL results and small, but 

not negligible differences are obtained between 

the COMSOL and FLUENT results. 

Finally, Figure 6 shows computed results for the 

temperature profiles along the symmetry line for 

the same four cases considered. The agreement is 

excellent for the three viscous methods. 
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Figure 5. Pressure distributions computed along the 

symmetry line, near the stagnation point for all four 

cases considered. 

 

Temperature Profile
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Figure 6. Temperature distributions computed along 

the symmetry line, near the stagnation point for all 

four cases considered. 

 

4. Conclusions 
 

We have investigated the planar laminar flow of 

an incompressible viscous fluid in the vicinity of 

a stagnation point. The solution first obtained by 

Hiemenz was reproduced and used as a baseline 

for comparison. Finite element (using 

COMSOL) and finite volume (using FLUENT) 



models of the problem were developed to 

investigate their performance against the 

baseline. Both, the COMSOL and FLUENT 

simulations were shown to be reliable for 

predicting the velocity, pressure and temperature 

distributions in this case. 
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