Depth-Averaged Modeling of Groundwater Flow and Transport

Peter K. Kitanidis Department Civil and Environmental Engineering Stanford University

COMSOL 2008

Outline

Pedagogical Aspects ("Comsol in Education")
 Importance of 2-D Depth-Averaged Flow
 Some Examples

Pedagogical Aspects

We have largely completed a transition to numerical tools to teach:

- Flow in porous media and
- Groundwater flow.
- Challenges:

 Hydrogeologists and Environmental Engineers have their own style of learning numerical methods

Little "glitches" in COMSOL appear to students like major stumbling blocks.

Pedagogical Aspects (cont.)

A strategy that seems to work: Do a sequence of many problems that improve, simultaneously, grasp of mechanics and mathematical modeling skills.

 "Learn on the job" with minimal discussion of numerical methods.

Start from simple problems and end up with actual applications.

Why 2-D Averaged?

In many practical applications, flow is in thin and (nearly) horizontal layers. Head differences over the depth are small.
 2-D modeling is easier computationally and in terms of data requirements.

Injection Extraction And MLS Wells

• Effective reduction rate: v_{U(VI)}=1mmol U(VI)/mg SRB-day

Delivery and Mixing in Wells: Edwards AFB

Idealized vertical cross-section

McCarty et al,. "Full-Scale Evaluation of in Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection." *Environ. Sci. Technol.* 32, no. 1 (1998): 88-100.

From Edwards AFB Pilot Study (McCarty et al.)

Subdomain Settings - Darcy's Law (esdl)

Equation

$$\delta_{\mathsf{S}} \; \mathsf{S}\partial\mathsf{H}/\partial t \, + \, \nabla \cdot \left[\; - \; \delta_{\mathsf{K}}\mathsf{K}/\left(\; \rho_{\mathsf{f}}\mathsf{g} \right) \nabla \left(\; \mathsf{p} \, + \, \rho_{\mathsf{f}}\mathsf{g}\mathsf{D} \; \right) \; \right] = \delta_{\mathsf{Q}}\mathsf{Q}_{\mathsf{S}}, \; \mathsf{H} = \mathsf{p}/\left(\; \rho_{\mathsf{f}}\mathsf{g} \; \right) + \mathsf{D}_{\mathsf{S}} \; \mathsf{D}_{\mathsf{S}}$$

Subdomains Groups	Coefficients Scaling terms Init Element Color			
Subdomain selection	Coefficients			
1	Library material: Load			
	Quantity Value/Expression Unit Description			
	Storage term: User defined 🔽			
	S 0.00001*H 1/m Storage term			
	θ _s 0.25 1 Volume fraction, fluids			
	X _F X _p 1 1/Pa Compressibility of fluid and solid			
	Hydraulic conductivity 🔽			
	K _s k*H m/s Saturated hydraulic conductivity			
	κ _s 1 m ² Saturated permeability			
Group	A _r 1001 Anisotropy ratios			
	P _f 1000 kg/m ³ Density, fluid			
Select by group	η 0.001 Pa+s Viscosity, fluid			
Active in this domain	Q _s 0 1/s Liquid source			
	OK Cancel Apply Help			

Subdomain Settings - Darcy's Law (esdl)

-Equation

$$\delta_{\mathsf{S}} \operatorname{S}\partial \mathsf{H}/\partial t + \nabla \cdot \left[-\delta_{\mathsf{K}} \mathsf{K}/\left(\,\rho_{\mathsf{f}} g\right) \nabla \left(\,p + \rho_{\mathsf{f}} g D \,\right) \,\right] = \delta_{\mathsf{Q}} \mathsf{Q}_{\mathsf{S}}, \, \mathsf{H} = \mathsf{p}/\left(\,\rho_{\mathsf{f}} g \,\right) + \mathsf{D}_{\mathsf{S}} \mathsf{D}_{\mathsf{S}}$$

Subdomains Groups	Coefficients Scaling terms Init Element Color			
Subdomain selection	Coefficients			
1	Library material: Load			
	Quantity	Value/Expression	Unit	Description
	Storage term:	User defined 🛛 🔽		
	S	0.35	1/m	Storage term
	θς	0.25	1	Volume fraction, fluids
	X _F X _p	1 1	1/Pa	Compressibility of fluid and solid
	Hydraulic conductivity			
	K _s	k*H_esdl	m/s	Saturated hydraulic conductivity
	κ _s	1	m ²	Saturated permeability
	🗖 A _r	1001	1	Anisotropy ratios
Group:	P _F	1000	kg/m ³	Density, fluid
Select by group	η	0.001	Pa∙s	Viscosity, fluid
Active in this domain	Qs	0	1/s	Liquid source
		ОК		

Global Equations

Equation: f(u, ut, utt, t) = 0

States Weak

Name (u)	Equation f(u,ut,utt,t)	Init (u)	Init (ut)	Description	
phie	OUTe+Q+pi*rw^2*phiet	16	0	1	~
phii	OUTi-Q+pi*rw^2*phiit	28	0		
					-
					-
-					*

Delivery and Mixing in Wells: Edwards AFB

Idealized vertical cross-section

McCarty et al,. "Full-Scale Evaluation of in Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection." *Environ. Sci. Technol.* 32, no. 1 (1998): 88-100.

Subdomain Settings - Solute Transport (esst)

Equation

```
\delta_{ts1} \left( \theta_s + \rho_b \partial c_p / \partial c \right) \partial c / \partial t + \nabla \cdot (-\theta_s D_L \nabla c) = - \mathbf{u} \cdot \nabla c + R_L + R_p + S_c
```

Subdomains Groups	Flow and Media Liquid Solid Init Element Co	lor
Subdomain selection	Flow and media	
1	Flow Field	Unit
	0 _{ts1} 1/86400	I Time-scaling coefficient
	₽ _s eta*H	1 Pore volume fraction
	u_esdl	m/s x-velocity
	v v_esdl	m/s y-velocity
	Q _s 0	1/s Liquid source
Group:		
Select by group		
Active in this domain		
	ОК Са	ncel Apply Help

Several Other Issues

For example, dealing with transport:
Recirculation;
Sorption
Multiple components and reactions (instantaneous, Monod kinetics, reversible).

Conclusion

For Groundwater Flow and Transport: COMSOL Multiphysics can be a valuable tool in teaching processes and in practical applications.