

Modelling the Thermal Impact of a Repository for High-Level Radioactive Waste in a Clay Host Formation

Xavier Sillen

Belgian Nuclear Research Centre (SCK•CEN)

Thermal impact of the disposal of radioactive waste in clay

- Geological disposal & problem specification
 - General Context
 - Typical repository layout
 - The thermal issues associated with the disposal of heat-emitting wastes
- T: Thermal evolution of a typical repository Simple, thermal model
 - Typical temperature evolution
 - Model equation, implementation, results
- T-H: Effect of / on groundwater flow Multiphysics model
 - Thermo-hydraulic modelling of the far field
 - Model equations, implementation, results
- Basic T-H-M: Uplift Multiphysics model
 - Thermo-hydro-mechanical modelling of the far field
 - Model equations, implementation, results
- Conclusions

2

- What can we do with our radioactive waste ?
 - From nuclear power plants, medical, industrial activities
 - Main challenge = protection of men/environment during a very long period of time (10⁴ ...10⁵ ...10⁶ years...)
- Geological Disposal of high-level waste
 - Accepted in a wide range of countries and by the EC
 - Engineered barriers + geological barrier : compatible with time scales associated with long-lived radioactive wastes:
 - Vitrified high-level waste (VHLW, reprocessed, COGEMA)
 - Spent fuel
- Clays as potential hosts for a repository
 - Very low permeability → solute transport by molecular diffusion
 - Sorption → delay and spread releases of radionuclides in time
 - If plastic clay: **self-sealing**, self-healing
 - Not a resource

- Some radioactive wastes generate a considerable amount of heat due to radioactive decay, even after interim storage (50-80 years)
- Example: vitrified high-level waste (COGEMA)

Thermal issues

How hot will it be ?

- Depends on waste type (radionuclide inventory)
- Engineered barriers & rock thermal properties
- Repository design parameters
 - Disposal galleries spacing
 - Waste package pitch within disposal galleries
- What could be the **consequences** of ΔT ?
 - Chemical/geochemical ?
 - Thermal degradation of engineered barriers & waste forms ?
 - Solubility & migration parameters of radionuclides,... ?
 - Thermal decomposition of organic matter in Boom Clay, CO₂?
 - Hydrogeology ?
 - Far field: thermal impact on the aquifer ?
 - Mechanical ?
 - Near field: Thermo-Hydro-Mechanics of EBS, host rock ?
 - Far field: uplift ?

6

Typical thermal loading for a disposal system:

- VHLW: ~ 1 kW per <u>supercontainer</u> after 60 years interim storage
- Supercontainer length = 4.2 m (= package pitch: no spacing)
- Gallery spacing = 50 m

Model equations: **T**

	Clay	Aquifer (sand)
T (thermal)	$\frac{\partial}{\partial t} (\rho_b c_{p,b} T) = \nabla \cdot (\lambda \nabla T) + q$ $\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}$	$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \frac{\nabla \left(\rho_w c_{p,w} T \mathbf{u} \right)}{\mathbf{u} = 0} = \nabla \cdot \left(\lambda \nabla T \right)$
H (hydro)	$\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \Lambda \frac{\partial T}{\partial t}$ $\Lambda = \left(\frac{\partial p}{\partial T}\right) undrained, oedometer$	$\frac{\partial}{\partial t} (\eta \rho_w) = \nabla \cdot (\rho_w \mathbf{u})$ with $\mathbf{u} = \frac{k}{\mu} (\nabla p - \rho_w \mathbf{g})$ (Darcy)
M (mech)	$\varepsilon_{z} = \frac{\Delta p + \beta_{d} K_{d} \Delta T}{\lambda_{d} + 2G}$	$\varepsilon_z = \frac{\beta_d K_d \Delta T}{\lambda_d + 2G}$

Thermal evolution, boundary conditions & mesh

Thermal evolution, Vertical ΔT profiles

COMSOL conference - Hannover 2008

11

Thermal evolution, full repository Typical results, T contours

How **hot** will it be ?

Example: calculated thermal field around a repository for vitrified waste

Thermal calculation only, heat transport by conduction (Fourier's law). Temperature field 100 years after disposal

65+

- 60

- 55

- 50

45

40

35

30

25

20

- 15

- 10

5

Reference geometry T, **T-H** & T-H-M model reduction

Model equations: **T-H**

	Clay	Aquifer (sand)
T (thermal)	$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) = \nabla \cdot \left(\lambda \nabla T \right) + q$	$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \nabla \cdot \left(\rho_w c_{p,w} T \mathbf{u} \right) = \nabla \cdot \left(\lambda \nabla T \right)$
	$\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}$	
H (hydro)	$\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial t} \mathbf{K}, \frac{\partial T}{\partial t}$ Very to keat transport Nerve heat transport no convective heat of the second sec	$\frac{\partial}{\partial t} (\eta \rho_w) = \nabla \cdot (\rho_w \mathbf{u})$ with $\mathbf{u} = \frac{k}{\mu} (\nabla p - \rho_w \mathbf{g})$ (Darcy)
M (mech)	$\varepsilon_{z} = \frac{\Delta p + \beta_{d} K_{d} \Delta T}{\lambda_{d} + 2G}$	$\varepsilon_z = \frac{\beta_d K_d \Delta T}{\lambda_d + 2G}$

COMSOL Multiphysics implementation and auxiliary equations

- Use of Earth Science Module (convenient, but not required)
 - H: Darcy's law (esdl)
 - T: Conduction & convection in porous media (eshcc)
 - Water density: $\rho = 1000.2 0.005 \times T^2$ [kg/m³] (*T* in °C)
 - Water viscosity: $\mu = \rho \cdot 9.2 \times 10^{-7} \cdot \exp(2050/(273.15+T))$ [Pa·s]
- No convection in low-permeability clay & geological layers below
 - Simply do not solve for flow in these subdomains ③
- Coupling of heat and flow equations:
 - H→T: Use velocities from esdl in eshcc
 - T→H: COMSOL > Physics > Equation system > Subdomain settings

Damping/Mass coefficient	
P	т
S_esdl	drho_dT*thetas
0	Dts_eshcc*Ceq_eshcc

T-H evolution, effect of local flow pattern

T-H evolution, effect of local flow pattern

T-H evolution, convection cells only in the absence of base flow !

• Cause of uplift: **thermal expansion**

Material	Expansion coeff. (m ³ /m ³ °C ⁻¹)	Symbol
Clay, drained	3×10 ⁻⁵	β_d
Clay, undrained	13×10 ⁻⁵	β_u
Water	21×10 ⁻⁵	β _w
Sand, drained	3×10 ⁻⁵	β_d

- Aquifers: excess water volume can quickly be accommodated
- Clay: overpressures, which slowly dissipate

COMSOL conference - Hannover 2008

Fluid

Reference geometry T, T-H & T-H-M model reduction

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

a) 3D world

Model equations: T-H-M

	Clay	Aquifer (sand)
T (thermal)	$\frac{\partial}{\partial t} (\rho_b c_{p,b} T) = \nabla \cdot (\lambda \nabla T) + q$ $\rho_b c_{p,b} = \eta \rho_w c_{p,w} + (1 - \eta) \rho_s c_{p,s}$	$\frac{\partial}{\partial t} \left(\rho_b c_{p,b} T \right) + \frac{\nabla \left(\rho_w c_{p,w} T \mathbf{u} \right)}{1 D, \mathbf{u} = 0} = \nabla \cdot \left(\lambda \nabla T \right)$
H (hydro)	$\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \Lambda \frac{\partial T}{\partial t}$ $\Lambda = \left(\frac{\partial p}{\partial T}\right) undrained, oedometer$	with $\frac{\partial}{\partial t}(\eta \rho_w) = \nabla \cdot (\rho_w \rho_w)$ with $\frac{10}{\mu} \cdot \frac{heat}{\rho_w} \cdot \frac{heat}{$
M (mech)	$\varepsilon_{z} = \frac{\Delta p + \beta_{d} K_{d} \Delta T}{\lambda_{d} + 2G}$	$\varepsilon_{z} = \frac{\beta_{d} K_{d} \Delta T}{\lambda_{d} + 2G}$

Summary of model equations (details in Picard & Giraud, 1995)

• Heat transport:
$$\frac{\partial T}{\partial t} = \alpha_T \frac{\partial^2 T}{\partial z^2} + \frac{q}{\rho_b c_{p,b}}$$

• Porewater pressure dissipation: $\frac{\partial p}{\partial t} = \alpha_H \frac{\partial^2 p}{\partial z^2} + \bigwedge \frac{\partial T}{\partial t}$

• Vertical deformation:
$$\varepsilon_z = \frac{\Delta p + \beta_d K_d \Delta T}{\lambda_d + 2G}$$

- Solve two 1D diffusion equations, then integrate ε_z over depth
- "Coupling" in COMSOL Multiphysics:
 - COMSOL > Physics > Equation system > Subdomain settings

C .	a f $e_a d_a$ o β γ Init Element	Weak Variables	
[^{Da}	Damping/Mass coefficient		
P)	Т	
1		-LAMBDA	
)	1	

Uplift evolution note that most of the uplift is due to thermal expansion of poorly drained clay (water)

Conclusions

- Modelling the geological disposal of radwaste
 - Large time scales
 - Multiple spatial scales (near field, far field)
 - Many processes involved, some of these are strongly coupled
- Complexity ?
 - Multidisciplinary rather than intrinsically complex
 - Large uncertainties, emphasize robust modelling (simplifications)
- How COMSOL Multiphysics fits in the picture
 - VERSATILITY: 1 toolbox, many possible uses in R&D programme
 - Thermal evolution of the far field (this presentation)
 - Phenomenological analysis: near field THM, buffer THMC, chemoosmosis, reactive transport, unsaturated flow, multiphase flow,...
 - Performance Assessment: radionuclides release & transport

Thank YOU for your attention.

Thanks go also to

ONDRAF/NIRAS, the Belgian National Radioactive Waste Agency, for continued support & funding.