

Simulation of Topology Optimized Electrothermal Microgrippers

O. Sardan^{*,1}, D. H. Petersen¹, O. Sigmund¹ and P. Bøggild¹

¹DTU Nanotech, Denmark

²DTU Mechanical Engineering, Denmark

*Corresponding author: DTU Nanotech, Ørsteds Plads, DTU Building 345E, DK-2800, Kgs. Lyngby, Denmark, <u>oezlem.sardan@nanotech.dtu.dk</u>

2008 Comsol Conference, November 4-6, 2008, Hannover, Germany

DTU Nanotech Department of Micro- and Nanotechnology

Outline

Introduction

- Electrothermal Microgrippers
- Nanomanipulation & Assembly
- Motivation
- > The Microgripper Interface
- > The COMSOL Model
 - Geometry Settings
 - Subdomain Settings
 - Boundary Settings
 - Mesh Settings
 - Solver Settings
- > Results & Discussion

Electrothermal Microgrippers

- > Conventional Three-Beam Design
 - ☑ Compact & flexible design, easy to operate
 - 🗵 Not strong enough
- > Topology Optimized Design
 - ☑ Flexible design, easy to operate

 \square Much higher force at the same size!

Operation Principle

- > Same for both three-beam and topology optimized designs
- > Based on resistive heating
- > Open & close

Nanomanipulation & Assembly

- > Basic nanomanipulation of carbon nanotubes/nanowires
 - On TEM grids for structrual analysis
 - On electrodes for electrical characterization
- > Assembly of nano-devices
 - CNT/NanoBIT-enhanced AFM super-tips

Collaboration with V.Eichhorn

Motivation

It is important to estimate...

- > The influence of design variations
 - During image processing after topology optimization
 - During various microfabrication steps
- > The operation temperature and the temperature at the end-effectors
- > The effect of the microgripper interface

Grey-scale output from the optimization algorithm...

Improved binary image...

2008 Comsol Conference, November 4-6, 2008, Hannover, Germany

It is important to estimate...

- > The influence of design variations
 - During image processing after topology optimization
 - During various microfabrication steps
- > The operation temperature and the temperature at the end-effectors
- > The effect of the microgripper interface

The COMSOL Model

› 3D Model

8

- > Three application modes
 - Conductive Media (dc)
 - Heat Transfer by Conduction (ht)
 - Solid, Stress Strain (smsld) \rightarrow Weak constraints on!

Properties		
Default element type:	Lagrange - Quadratic	
Analysis type:	Static	•
Large deformation:	Off	•
Specify eigenvalues using:	Eigenfrequency	*
Create frame:	Off	
Weak constraints:	On	·
Constraint type:	Ideal	-

Geometry Settings

- > 2D CAD drawing from a DXF file
- > 3D model by extruding the geometry along the z-axis
 - Contact leads
 - $-1 \, \mu$ m-thick oxide underneath

Subdomain Settings

- > Silicon dioxide & polysilicon from the MEMS materials library
- > For polysilicon, $\alpha = \alpha(T)$, $\sigma = \sigma(T)$ and k = k(T) (Geisberger 2003)
- > For all subdomains
 - Resistive heating
 - Thermal expansion

Boundary Settings

- > Electrical domain
- > Thermal domain
 - Fixed temperature underneath the oxide
 - Air convection, with h= h(T) (Geisberger2003)
- > Mechanical Domain

Mesh Settings

- > Variable mesh density
 - 1. Meshing the critical edges
 - 2. Meshing the upper boundaries
 - 3. Sweeping through all subdomains (multiple layers)

Solver Settings

- > Simulation of the actuation behavior
 - Parametric solver with default settings

Auto select solver Auto select solver Stationary Time dependent Eigenvalue	General Parametric Stationary Adaptive Advanced Parameter Parameter name: V0 Parameter values: 0.5:0.5:6 Linear system solver Linear system solver
Parametric Stationary segregated Parametric segregated	Preconditioner:
Adaptive mesh refinement	Matrix symmetry: Nonsymmetric -

Displacement Results vs. Experiments

- > Actuation under an optical microscope at room temperature
- > Simultaneous filtering and image processing

DTU

Temperature Results

- > Temperature distribution within the actuator
 - Gap fully closed \rightarrow 1 µm-displacement, V₀ = 5.6 V
- > Ongoing Raman measurements agree with the profile!

Finding the In-plane Stiffness

- > Settings:
 - Prescribed displacement at the end-effector boundary
 - Solving only for the mechanical domain
 - Integrating the force over the boundary

Stiffness Results

> Results:

- Conventional design: $k_{s,y} = 2.3 \text{ N/m}$

(Agrees well with force measurements...)

- Optimized design: $k_{s,y} = 234 \text{ N/m}$

 \square ~10² times improvement at the same size!

Acknowledgements

- > EU Projects:
 - NANOHAND
 - NANORAC
- > COMSOL A/S (Denmark):
 - Lars Gregersen
 - Thure Ralfs

THANK YOU FOR YOUR ATTENTION QUESTIONS & COMMENTS?

Material Properties (I)

Temperature, T [K]	Thermal Conductiv [W/(m·K)]	vity, k CTE, α [K ⁻¹]		
300	65.00	$2.5 imes10^{-6}$		
400	53.75	$3.1 imes10^{-6}$		
500	46.54	$3.5 imes10^{-6}$		
600	40.00	$3.8 imes10^{-6}$		
700	35.00	$4.1 imes10^{-6}$		
800	32.08	$4.3 imes10^{-6}$		
Electrical Conductivity, $\sigma = 1/\rho = \beta_{1+} \beta_2 T^{\beta_3}$				
Coeff	cient	Value		
β	1	$2.6 imes 10^{-3}$		

 β_2

 β_3

 $8.16\times10^{\text{-9}}$

1.946

Temperature [K]	Heat Transfer Coefficient, h [W/(m ² ·K)]
300	1101.7
400	1214.3
500	1381.0
600	1520.7
700	1660.3
800	1799.9