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Abstract: The main design goals for electro-

magnetic actuators are force, switching speed, 

packaging, and energy efficiency. In the devel-

opment of magnetic valves for electronic brake 

systems at Continental Automotive Systems, 

these criteria are assessed using COMSOL Mul-

tiphysics. From the point of view of modelling, 

the dynamic behaviour is most interesting. For 

instance, the response to a voltage step involves 

the calculation of the time-dependent magnetic 

field, self-inductance, eddy currents, and the 

movement of magnetic parts. We achieve this by 

coupling the equations of motion with the elec-

tromagnetic equations by means of a moving 

mesh. Finally, we show how to approximate the 

model by a small system of ordinary differential 

equations. 

Keywords: ALE mesh deformation, electromag-

netism, equation of motion, magnetic induction, 

reduced dynamic model 

 

 

1. Main results 

 
In a typical valve design, mesh variation in-

dicates that the numerical error in the calculation 

of electromagnetic forces is less than 1 %. The 

movement of the magnetic armature is described 

by a mesh deformation with the following set-

tings. The armature is surrounded by a rigid non-

magnetic cylindrical hull. This is surrounded by 

a second cylindrical hull. Between these two 

cylinders, the mesh deformation is prescribed 

explicitly. For the time-dependent solver algo-

rithm, a rather fine tolerance is recommended. 

The response of an electromagnet to a 

voltage step is calculated in terms of armature 

movement, solenoid current and eddy current 

powers. The influence of eddy currents on a 

voltage step response is small. Calculation time 

decreases when the solenoid is replaced with a 

circular line current source. However, this also 

leads to a significant change in the result. 

When eddy currents are neglected, the dy-

namic system behaviour is determined by the 

stationary behaviour. The latter can be described 

by look-up tables. This approach leads to an effi-

cient reduced dynamic model. The effect of eddy 

currents is re-introduced by a linear model exten-

sion. 

 

 

2. Model description 

 
The valves used in hydraulic anti-lock brake 

systems are actuated by electromagnets, which 

usually are axially symmetric. The magnetic 

armature is surrounded by brake fluid. The mag-

netic circuit consists of a core, a yoke around the 

solenoid, a radial gap filled with non-magnetic 

steel, the armature which moves in axial direc-

tion, and an axial gap filled with break fluid. For 

the purpose of this paper, the simplified geome-

try shown in Figure 1 was used. The total calcu-

lation volume is a sufficiently large ball centred 

at the origin. We choose a radius of 5 cm. As 

solenoid parameters, we assume a winding num-

ber of w = 500 and a resistance of R = 5 Ω. 

 

 
 

Figure 1. Typical designs of magnetic circuits 

 

In the left-hand part of Figure 1, the section 

area of the solenoid is shaded in red. In the right-

hand part, a point current source, which repre-

sents a circular current in the centre of the sole-

noid, is used instead. This reduces the number of 
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mesh elements in the calculation. However, we 

will see that it also changes the calculation re-

sults to some extent. 

 

 

3. Maxwell’s equation 
 

The problem is axially symmetric with cur-

rents in the angular direction only. COMSOL 

describes such a problem by Maxwell’s equation  
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where A is the magnetic vector potential, and the 

magnetic flux density is given by B = rot A. 

When we write this equation in cylindrical coor-

dinates, the symmetry assumptions imply that 

both the external current density Jext and the vec-

tor potential A have only an angular component. 

Moreover, the derivative with respect to the an-

gle vanishes. Rewriting the rotation operator in 

cylindrical coordinates, we obtain Maxwell’s 

equation for the angular component Aφ of the 

vector potential A. This contains the term Aφ/r. It 

can be shown that this term approaches ½ Bz as r 

tends to 0. In particular, we may define a new 

dependent variable u = Aφ/r. Writing 

),( zr ∂∂=∇ , we obtain the form 
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of Maxwell’s equation which is used by 

COMSOL. 

 

 

4. Magnetization 
 

The magnetic flux density B is related to the 

magnetic field H by the equation B = µ0 µ r H. 

The relative permeability µ r is very close to 1 for 

non-ferromagnetic materials, but it depends on 

the magnetization in a ferromagnetic material. 

Therefore, the problem is non-linear. We use the 

relation between B and H which is described by 

Figure 2. Thus we simplify the situation by ne-

glecting magnetic hysteresis and by assuming 

that µ r is a scalar. 

 
Figure 2: magnetisation of machining steel 

 

In the present form of Maxwell’s equation, 

we must use this B-H-curve in order to ex-

press µ r (or, since the introduction of COMSOL 

version 3.4, the norm of H) as a function of B. 

The table of values of this function is saved in a 

file and used by a COMSOL interpolation func-

tion mur. We choose piecewise cubic interpola-

tion with constant extrapolation. In the 

COMSOL subdomain settings tab, we enter 

mur(normB_emqa) in the field for the iso-

tropic relative permeability. Finally, we must 

avoid the singularity in the derivative of this ex-

pression at 0 by providing a non-constant initial 

value or by redefining normB_emqa as  

 
  sqrt(eps + abs(Br_emqa)^2 

             + abs(Bz_emqa)^2). 

 

 

5. Convergence of force 
 

For the comparison of the different mesh de-

formation techniques which COMSOL provides, 

we would like to have a reference value for the 

magnetic force. Therefore, we study how the 

calculated force converges over regular mesh 

refinement steps. The working gap is fixed 

to 0.25 mm, and the excitation is I w = 500 A. 

We start with different pre-defined mesh sizes. 

Since the two non-magnetic gaps in the ferro-

magnetic circuit are particularly interesting, we 

also set the “resolution of narrow regions” mesh 

parameter. One of the initial meshes is mixed, 

with a mapped mesh in and around the armature. 

Figure 3 contains the forces which we 

calculate in this way. The three 

(indistinguishable) horizontal lines at 19.88 N 

indicate the result of the COMSOL adaptive 

solver (refinement methods: longest edge / 

regular / remesh). The forces show a spread 

which decreases over mesh refinement steps. The 



uncertainty of the force calculation with a 

sufficiently fine mesh is below 1 %. The result 

obtained with a mixed triangular-quadrilateral 

mesh is more stable. However, this advantage 

seems to be too small to justify the extra 

modelling effort in general. 

When we compare the calculations for a vol-

ume current source and for a line current source 

(Figure 4), we find that the spread of the results 

seems to be somewhat larger for a line current 

source. This is probably due to the fact that the 

line current source is a singularity of the mag-

netic field, which cannot be properly resolved by 

the mesh. However, it is much more important to 

observe that the force value changes by more 

than 10 %. In a quantitative investigation, it is 

therefore important to keep the current in its 

proper position, even if this position is irrelevant 

in a simplified description of the electromagnet 

as a circuit of magnetic resistances. 

 

 
Figure 3 

 

 
Figure 4 

 

 

6. Prescribed armature movement via 

mesh deformation 
 

This section contains the main part of this 

paper, the comparison of the COMSOL mesh 

deformation techniques. We study these tech-

niques for a prescribed axial displacement of the 

magnetic armature. Thus we are considering a 

parameterized geometry. However, the corre-

sponding COMSOL application mode is not 

available for axially symmetric two-dimensional 

geometries, so that we have to use the more gen-

eral ALE application mode instead. In order to 

avoid the inversion of mesh elements, we intro-

duce additional edges around the armature. Thus 

we create a rectangular net, which is shown in 

the following figure. 

 

 
Figure 5: geometry modification for mesh deformation 

 

The displacement in the shaded area around 

the armature has to be determined, the displace-

ment of the armature is constant, and the dis-

placement of the remaining geometry is zero. 

The displacement around the armature is pre-

scribed on the six edges which are deformed. 

Let s be the edge parameter, which runs from 0 

to 1, and let δ be the armature displacement.  The 

displacement along the edge is prescribed as 

δ f(s) or as δ f(1-s), depending on the direction of 

the edge parameterization. Here f is a continuous 

function from the real line to the unit interval 

[0, 1] which is 0 on ]- ∞, 0[, is 1 on ]1, ∞[, and is 

a polynomial on [0, 1]. Specifically, we use the 

following definitions for the polynomial section 

of f, i.e. for 0 ≤ s ≤ 1: 
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The graphs of these functions are shown in 

Figure 6. Thus the function f0 is continuous, the 

function f1 is continuously differentiable, and the 



function f2 is twice continuously differentiable. 

One of the interesting questions is whether a 

higher degree of smoothness is important for the 

calculation. 

 

 
Figure 6: functions for mesh deformation 

 

Simplicity is not the only advantage of f0 

over the smoother alternatives. Indeed, on an 

edge of length d which is compressed, we have 

to avoid self-overlap (i.e. mesh inversion). The 

condition for this is that the absolute value of the 

derivative of δ f is less than d. Now the functions 

fk attain their maximal derivatives at ½, and the 

values are 
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This means that the maximal displacement which 

can be described with f0 is d, whereas the maxi-

mal displacement for f1 is only ⅔ d, and the 

maximal displacement d15
8  for f2 is even 

smaller.  

The results of the various calculations are 

summarized in Table 1 at the end of this section. 

As in the convergence study, we used a line cur-

rent source of 500 ampere turns and a gap of 

0.25 mm. This gap is obtained by deforming the 

initial (drawn) gap of 0.4 mm. The solution times 

were obtained with COMSOL 3.2 on an AMD 

Opteron 280 processor with 2.4 GHz. Every ver-

sion of the calculation was run both on a triangu-

lar mesh and on a mixed mesh. The results 

indicate that the accuracy of the result is already 

very good when the displacement is described by 

f0, and is increased slightly when we use f1 or 

even f2 instead. This holds true for both the 

Laplace and the Winslow smoothing technique 

provided by COMSOL. (In Laplace smoothing, 

the space coordinates satisfy a Laplace equation 

as functions of the reference coordinates. In 

Winslow smoothing, the opposite relation holds.) 

The results for Laplace smoothing and for Wins-

low smoothing are exactly the same. However, 

Winslow smoothing sometimes leads to warn-

ings about inverted mesh elements (red table 

entries) or requires to mark the problem as 

“strongly non-linear” in the solver parameters 

setting (blue table entry). 

The geometry was tiled by rectangles in or-

der to avoid mesh inversion. The resulting ge-

ometry is particularly simple, which allows us to 

prescribe the displacement in the deformed mesh 

areas explicitly. Thus we save calculation time. 

Moreover, a prescribed deformation may also be 

smoother than a deformation which is calculated 

numerically. Let us describe the deformation on 

a rectangle [R1, R2] × [Z1, Z2] in the R-Z-plane of 

reference coordinates. Say that the lower and the 

left-hand edges are to be fixed, and the upper 

right-hand corner is to be displaced by δ in the z-

direction. Then the r-displacement vanishes on 

the rectangle, and the z-displacement at (R, Z) 

can be prescribed by the formula 
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On a rectangle where the displacement is 0 on 

one edge and δ on the opposite edge, one may 

drop the second or the third factor from this for-

mula. In the linear case, i.e. if f = f0, this formula 

describes in fact the solution to the Laplace 

equation with linear boundary conditions. Thus 

Laplace smoothing and prescribed displacement 

coincide in this case. 

The spread between the results for the differ-

ent deformation techniques is in the order of 

magnitude of the numerical error if we assume 

that the latter is indicated by the spread of results 

for different meshes. Although this is already 

very satisfactory, it can still be improved by 

drawing a narrow non-magnetic area around the 

armature and moving this area rigidly with the 

armature. It turns out that the force calculated in 

such a model is perfectly independent of the 

choice of a mesh deformation technique.  

Therefore, the recommendation which results 

from this investigation is to use a rigid hull 

around the moving armature and a prescribed 

liner / bilinear mesh deformation. 



 
without armature air hull 

 
with armature air hull 

          

 model P_05 C0 C1 C2  model P_06 C0 C1 C2 

22.440 N 22.472 N 22.480 N  22.538 N 22.538 N 22.538 N 
Laplace 

8 s 8 s 8 s  
Laplace 

17 s 16 s 19 s 

22.440 N 22.474 N 22.483 N  22.538 N 22.538 N 22.538 N 
Winslow 

10 s 9 s 11 s  
Winslow 

23 s 27 s 50 s 

22.440 N 22.595 N 22.584 N  22.538 N 22.537 N 22.537 N 
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prescribed 
8 s 9 s 9 s  

prescribed 
10 s 11 s 11 s 

          

 model P_07 C0 C1 C2  model P_08 C0 C1 C2 

22.405 N 22.529 N 22.546 N  22.559 N 22.559 N 22.558 N 
Laplace 

9 s 11 s 11 s  
Laplace 

12 s 12 s 12 s 

22.404 N 22.529 N 22.545 N  22.559 N 22.559 N 22.558 N 
Winslow 

12 s 11 s 12 s  
Winslow 

12 s 16 s 28 s 

22.405 N 22.676 N 22.684 N  22.559 N 22.558 N 22.557 N m
ix

ed
 m

es
h

 

prescribed 
10 s 11 s 13 s  

prescribed 
9 s 10 s 11 s 

 

Table 1: comparison of mesh deformation techniques 

 

 

7. Current build-up at fixed armature 

under voltage step 
 

The aim is to solve a time-dependent model 

with a moving armature. As a last preparatory 

step, we have to determine suitable tolerance 

requirements for the time-dependent solver. This 

is again done in a model with fixed armature. We 

apply a constant voltage. Since the initial value 

of the field is zero, a constant voltage represents 

a voltage step at time 0. Eddy currents are in-

duced in the armature, and the current-build up is 

delayed by the voltage induced in the coil. We 

calculate the induced voltage by averaging the 

electric field over the coil area, 

,2ind dzdrEr
S
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U
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where w is the winding number, and S is the sec-

tion area of the coil in a plane which contains the 

symmetry axis. The solution time depends sig-

nificantly on the settings for the absolute and 

relative tolerance of the time-dependent solver. 

The following table shows the time needed to 

calculate the solution over an interval of 10 ms 

for several combinations of tolerance parameters. 

A good setting is 10
-5 

for both the relative and 

the absolute tolerance. The solution time in-

creases if the tolerance is either larger or smaller. 

 

Table 2: time-dependent solver tolerance settings 

 

 

8. Armature movement under voltage 

step 
 

In this final section, we combine all the mod-

elling techniques discussed so far. This yields a 

model in which the armature moves under the 

influence of the magnetic force, and the build-up 

of the magnetic field and of the coil current is 

delayed by eddy currents and by the voltage in-

duced in the coil both by the magnetic field 

change and by the armature movement. To set up 

such a model in COMSOL, we can take together 

the elements of the preceding models and add an 

ordinary differential equation for the armature 

  log(atol) 

  -3 -4 -5 -6 -7 

-3 96 s 199 s 195 s 276 s 226 s 

-4 168 s 219 s 85 s 111 s 244 s 

-5 179 s 103 s 80 s 117 s 121 s 

-6 179 s 201 s 86 s 124 s 164 s lo
g

(r
to

l)
 

-7  219 s 97 s 121 s 146 s 



movement in the global equations dialogue. At 

time 0, the armature rests at a gap of 0.5 mm. At 

a gap of 0.1 mm, the armature hits a stop. This 

stop is modelled by a spring of stiffness c = 

5×10
6
 N/m and a velocity-proportional damping, 

in which the damping constant has the a-periodic 

limit value k = 2 (c m)
½
 (here m is the armature 

mass). The stop stiffness is a rather arbitrary 

value, for which the stop elasticity is just visible 

in the plot of the armature position versus time. 

This plot is shown in Figure 7 and Figure 8  be-

low, together with the development of the cur-

rent, the magnetic force, and the powers of the 

eddy currents in the various parts. 

The calculation time for the combined model 

is much longer than for the constituent models. 

We use a mesh which is rather fine in the gaps, 

at the corners, and close to the edges where the 

eddy currents are built up. This mesh results in 

48871 degrees of freedom. For an interval of 

15 ms, calculation time is 8755 s
1
. 

Figure 7 and Figure 8 also show the behav-

iour of a model in which the conductivity of the 

steel parts is set to 0, which means that the eddy 

currents are suppressed. This entails a faster in-

crease in the magnetic field. Hence the current 

development is initially slowed down, and the 

current reaches its stationary value earlier. The 

armature movement is also slightly accelerated. 

However, the difference between the situation 

with and without eddy currents is small enough 

to be neglected for many purposes. (Note that 

when eddy currents are neglected, we may con-

sider magnetic force and magnetic flux as sta-

tionary functions of current and armature 

position. Using these two functions, the devel-

opment of current and position can be described 

by a system of ordinary differential equations. 

This is worked out in Section 9.) Damping by 

eddy currents seems to be advantageous for the 

time-dependent solver algorithm. When eddy 

currents are switched off, the solution time in-

creases to 20064 s. 

Finally, Figure 7 contains the armature 

movement in a model in which the coil is re-

placed with a circular line current source. (Here 

eddy currents are again considered.) The influ-

ence on the result is even higher than in the static 

                                                           
1
 When we introduce an artificial electric con-

ductivity of 10
4
 S/m in the air and winding re-

gions, calculation time is reduced by 23 % to 

6761 s. 

force calculation. However, solution time is re-

duced to 1628 s, so that the disturbance of the 

result may be acceptable under certain circum-

stances. 

 

 
Figure 7: armature movement 

 

 
Figure 8: currents and force 

 

 

9. Extraction of a small dynamic system 
 

The method which has been described up to 

this point yields a very faithful solution of the 

Maxwell equation model of an electromagnet. 

However, the computational workload is consid-

erable. We would like to solve the model for 

many different external voltage patterns. More 

generally, we would like to incorporate the 

model into a larger dynamic system which de-

scribes, on the one hand, the parts driven by the 

electromagnetic actuator and, on the other hand, 

the electronic driver and a control algorithm. 

Therefore, we would like to simplify the full 



model to a small set of ordinary differential 

equations. The key step is a preliminary neglect 

of eddy currents. This will lead to a small and 

fast model based on look-up tables, which we 

only need to create once for every design. The 

look-up tables are based on a stationary 

COMSOL calculation. In particular, the station-

ary behaviour of Maxwell’s equations is repro-

duced exactly. Eddy currents are then taken into 

account by an effective model with parameters 

which are adapted to a transient COMSOL calcu-

lation. 

We begin with Maxwell’s equation 
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as given above, but we will now drop the first 

summand on the left-hand side. This amounts to 

neglecting the eddy currents induced by the 

change of the magnetic field. Note that we may 

keep the third summand, i.e. the eddy currents 

induced by the armature motion. The resulting 

equation does not depend on time any more. In 

the rotationally symmetric cases in which we are 

now interested, we can express velocity and cur-

rent density by  

,    and    ext ϕeJev
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Θ
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where v is the scalar velocity, Θ is the number of 

ampere turns, and S is the section area of the 

solenoid in a plane containing the axis. The re-

sulting equation 
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yields A = Aφ(Θ, x, v) eφ, the magnetic vector 

potential as a function of ampere turns, armature 

position, and armature velocity. 

The number of ampere turns is determined by 

the external and induced voltages according to 

),( indext UU
R

w
+=Θ  

where w is the number of turns and R is the elec-

tric resistance of the solenoid. The induced volt-

age is the average voltage over one turn times the 

winding number w: 
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Using Eφ = –∂Aφ/∂t and exchanging time deriva-

tive and integration, we find the relation Uind = 

– w dΦ/dt, where  
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is the magnetic flux through the solenoid, aver-

aged over the windings. Since the magnetic po-

tential Aφ is determined by Θ, x, and v, so is Φ. 

For fixed x and v, the flux Φ is a strictly increas-

ing function of Θ. Therefore, we can form the 

inverse function and consider Θ = Θstat(Φ, x, v). 

Thus we obtain just one ordinary differential 

equation 

))(),(),(()()(' statext tvtxt
w

R
tUtw ΦΘ−=Φ  

for the magnetic flux Φ(t) as a function of time. 

Together with the equation of motion for the 

armature, this equation is a small dynamic model 

of the electromagnet. 

The calculation of the inverse function can be 

done directly in COMSOL. One adds a global 

equation for the scalar variable Θ. This equation 

implements the integral constraint that the aver-

age solenoid flux should equal some prescribed 

value. 

 

 

10. Eddy current correction 
 

We finish the reduced dynamic model by in-

troducing an eddy current correction. To this 

purpose, we keep the main dynamic equation 

)()()(' ext t
w

R
tUtw Θ−=Φ  

and extend the relation Θ(t) = Θstat(Φ(t)) (which 

we now write without the dependence on posi-

tion and velocity) by two linear correction terms: 
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Here a and b are constant vectors, and ψ is a 

vector-valued function of time. We determine ψ 

by a linear differential equation 

)(')()(' ttt Φ+= cCψψ  

with matrix and vector constants C and c. Note 

that the stationary system behaviour is un-

changed because the differential equation is ex-

cited by the time derivative Φ'. For generic C, 



we can apply a linear transformation to ψ in or-

der to diagonalize C. We can also rescale the 

components of ψ so that the vectors a and b con-

sist of zeros and ones in the unit system which 

we have chosen. Thus the above linear correction 

is equivalent to the system 
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with suitable time constants τα
(β)

 and electrical 

conductance constants Gk. (Note, by the way, 

that a good assumption for the temperature de-

pendence of these constants is proportionality to 

(1 + α(T-Tref))
-1

, where α = 0.004 K
-1

 is the tem-

perature coefficient for the electric resistance of 

metals. This amounts to a uniform linear com-

pression of the time scale as electric resistance 

increases.) The constant model parameters τα
(β)

 

and Gk are determined by fitting the model to a 

transient COMSOL calculation. More precisely, 

we determine the system response (both current 

and force) in COMSOL for various external 

voltage patterns, armature positions, winding 

numbers, and temperatures. We then choose the 

model parameters such that the response of the 

reduced system fits the COMSOL result as 

closely as possible in a least squares sense. 

How large should the numbers m and n of  

correction quantities be chosen? This question 

has to be studied in concrete industrial examples. 

In my experience, m = 0 and n = 1 are sufficient 

for the response to a single voltage step. For 

more complicated voltage patterns, I currently 

use m = 1 and n = 1. 

 

 

11. Conclusions 
 

Three calculation scenarios for electro-

magnets have been presented, namely stationary 

layout, dynamic finite element calculation in-

cluding armature motion by mesh deformation, 

and a model reduction technique. The compari-

son to experimental evidence, which could not 

be included here, is very satisfactory. These 

methods are suitable parts of the development 

process of electromagnetic actuators. 
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