Benchmarking COMSOL Multiphysics 3.5a – CFD problems

Darrell W. Pepper

Xiuling Wang*

Nevada Center for Advanced Computational Methods University of Nevada Las Vegas

*Purdue University - Calumet

Boston MA, Oct. 8-10, 2009

Xiuling Wang, PhD

Testing the mesh generator

Verification vs validation

Verification = solving the eqns right

Validation = solving the right eqns

Benchmarking = validating the verification

Outline

- Introduction
- Benchmark environment and criteria
- Simulation results
 - 1. Flow over a 2-D circular cylinder
 - 2. Compressible flow in a shock tube
 - 3. Incompressible heated laminar flow and nonheated turbulent flow over a 2-D backward facing step
 - 4. 3D natural convection within an air-filled articulated cubical enclosure
- Conclusions

Introduction

Objective

- Compare results obtained from COMSOL Multiphysics 3.4 with those obtained from COMSOL Multiphysics 3.5a for four multiphysics problems
- Test four CFD and CHT problems using COMSOL Multiphysics 3.5a
- Obtain the CPU times and memory costs for solving those problems
- New features for COMSOL 3.5a segregated solver; 32 – 64 bit; memory saving 50%

Benchmark environment and criteria

Hardware:

- Platform 1: Pentium(R) D CPU 2.80GHz,
 4.0GB this configuration was used to test the first four benchmark problems.

Benchmark environment and criteria

 Operating system: for the first hardware platform, the operating system was 32 bit and running Windows XP; for the second hardware platform, the operating system was 64 bit running Windows Vista.

Benchmark environment and criteria

- Benchmark criteria
 - Computational accuracy (comparison difference is less than or equal to 5%)
 - Contours of key variables
 - Extreme values
 - Experimental data
 - Mesh independent study
 - Comparisons are made for results obtained for different mesh densities for a selected test problem
 - Increase in the number of elements leads to negligible differences in the solutions.

Benchmark environment and criteria-cont.

- Benchmark criteria
 - Memory
 - Provided by software package whenever possible
 - COMSOL "Mem Usage" shows the approximate memory consumption, the average memory during the entire solution procedure
 - CPU time
 - Execution times can be recorded from immediate access to the CPU time by the program or from measuring wallclock time
 - To obtain accurate CPU time, all unnecessary processes were stopped

Comparison between 3.4 and 3.5a

Benchmark	Software	Number of	Memory cost	CPU time (s)	Compared values
case	Used	elements	(MB)		
Case 1:	COMSOL	3,407	245	1,537	Tot _{dis-max} :25.43µm
FSI	Multiphysics 3.4	6,602	267	3,342	Tot _{dis-max} :25.72µm
101		9,728	308	5,301	Tot _{dis-max} :25.50µm
		14,265	349	8,475	Tot _{dis-max} :26.04µm
	COMSOL	3,372	264	240	Tot _{dis-max} :21.97µm
	Multiphysics 3.5	6,221	290	522	Tot _{dis-max} :23.99µm
		9,918	295	719	Tot _{dis-max} :23.72µm
		20,545	320	2426	Tot _{dis-max} :25.14µm
Case 2:	COMSOL	5,032	220	5	X _{dis-max} =3.065µm
Actuator	Multiphysics 3.4	9,635	312	11	$X_{dis-max} = 3.069 \mu m$
Actuator		15,774	520	22	X _{dis-max} =3.066µm
	COMSOL	5,032	170	3	X _{dis-max} =3.065µm
	Multiphysics 3.5	10,779	360	8	$X_{dis-max} = 3.067 \mu m$
		16,893	480	22	X _{dis-max} =3.066µm
Case 3:	COMSOL	9,067	173	127	reflection, isolation and
Circulator	Multiphysics 3.4	19,398	376	361	insertion loss
	COMSOL	14,089	280	103	
	Multiphysics 3.5				
Case 4:	COMSOL	38,440	303	78	B _{max} =1.225T
Conorator	Multiphysics 3.4				
Generator	COMSOL	32,395	190	17	B _{max} =1.257T
	Multiphysics 3.5				

- The flow around a circular cylinder has been examined over many years and is a popular CFD demonstration problem.
 - At very low Reynolds numbers, the flow is steady.
 - As the Reynolds number is increased, asymmetries and timedependent oscillation develops in the wake region, resulting in the well-known Karman vortex street.

- Re = 100, results from t = 0 s to t = 17 s.
- Mesh independent study

Number	Number of degrees	CPU	Memory
of	of freedom	time (s)	(MB)
elements			
Mesh 1:	39,306	3,728	884
8,568			
Mesh 2:	68,105	14,236	1,193
14,965			

Velocity fields from mesh 1

Velocity fields from mesh 2

Re = 100

Comparison of drag coefficient for Re = 100 with literature data [5]

COMSOL 3.5a	COMSOL 3.5a	Numerical
Mesh 1	Mesh 2	Results [5]
1.486	1.485	1.3353

[5] B. N. Rajani, A. Kandasamy and Sekhar Majumdar, "Numerical simulation of laminar flow past a circular cylinder", <u>Applied Mathematical Modelling</u>, 33, pp. 1228-1247, 2009.

Re = 100

- Re = 1,000, results from t = 0 s to t = 17 s.
- Mesh independent study

Number	Number of degrees	CPU	Memory
of	of freedom	time (s)	(MB)
elements			
Mesh 1:	37,974	1,894	974
8,272			
Mesh 2:	79,947	4,024	1,501
17,536			

Velocity fields from mesh 1

Velocity fields from mesh 2

Re = 1000

Comparison of drag coefficient with literature data [6]

COMSOL 3.5a	COMSOL 3.5a	Numerical
Mesh 1	Mesh 2	Results [6]
1.69	1.65	1.47

[6] G. Sod, "A survey of finite difference methods for systems of nonlinear hyperbolic conservation laws", Journal of Computational Physics, 27, pp.1-31, 1978.

Lift coefficient from mesh 1

Lift coefficient from mesh 2

Flow over a cylinder Re = 100

Natural convection within a cylinder

- Shock waves arise from sudden jumps in gas properties such as temperature or pressure. They are very thin regions (~10⁻⁸ m) in a supersonic flow across which there is a large variation in flow properties.
- The configuration of problem is shown in the figure below, the diaphragm is located at x = 0.5.

- The initial conditions for the driver section were $\rho = 8.0$; P = 7.2and ; u = 0.0; the initial condition for the driven section was $\rho = 1.0$; P = 0.72; u = 0.0
- Results were obtained and compared with analytical solutions as well as simple numerical models based on MacCormack and Roe's methods for t = 0.2.

Number of	Number of	Number of	Number of
elements for	degrees of	elements for final	degrees of
coarse mesh	freedom for	fine mesh	freedom for final
	coarse mesh		fine mesh
250	3,213	800	9,963
250	3,213	4000	48,843

Computational meshes

- Incompressible flow over a backward facing step is a classic problem that has been analyzed for many years. While there are numerous fluid flow comparison studies, very few include the effects of heat transfer.
- First test case is run as Re = 800 for thermal and fluid flow; second test case is run for Re = 47,648 for fluid flow only. The configuration of problem is shown as:

For inlet flow: $u(y) = \begin{cases} 0, \text{ for } 0 \le y \le \frac{1}{2} & v(y) = 0\\ 8y(1-2y), \text{ for } \frac{1}{2} < y \le 1 \end{cases}$ $T(y) = \left[1 - (4y-1)^2\right] \left[1 - \frac{1}{5}(4y-1)^2\right] \text{ for } \frac{1}{2} < y \le 1$ $\frac{\partial T(y)}{\partial x} = 0 \text{ for } 0 \le y < \frac{1}{2}$

on upper and lower walls:

$$u(y) = v(y) = 0$$
$$\nabla T \cdot \hat{n} = \frac{32}{5}$$

• Re = 800

Number of	Number of degrees of	CPU	Memory
elements	freedom	time (s)	(MB)
Mesh 1:	108,864	2	298
10,850			
Mesh 2:	288,384	3	350
22,000			

•mesh 1

•mesh 2

Notice the fine mesh used along the boundary and in regions close to the step

Re = 800

Velocity fields from mesh 1

•Velocity fields from mesh 2

•Streamlines from mesh 1

•Streamlines from mesh 2

10

11

12

Comparison of lower wall eddy sizes with literature data [12] [13]

0

COMSOL	COMSOL 3.5a	Gartling	Wang and
3.5a Mesh 1	Mesh 2	[12]	Pepper [13]
6.80	6.70	6.1	6.0

[12] D. K. Gartling, "A Test Problem for Outflow Boundary Conditions- Flow over a Backward-Facing Step", <u>Int.</u> J. Numer. Meth. Fluids, Vol. 11, pp. 953-967, 1990.

[13] X. Wang and D. W. Pepper, "Application of an *hp*-adaptive FEM for Solving Thermal Flow Problems", Journal of Thermophysics and Heat Transfer, Vol. 21, No. 1, pp.190-198, 2007.

• Re = 47,648

Initial	Initial	Final	Final	CPU	Memory
Number of	Number of	Number	Number of	time	(MB)
elements	degrees of	of	degrees of	(s)	
	freedom	elements	freedom		
Mesh 1: 291	2,861	3,876	34,373	52	233
Mesh 2: 585	5,504	8,734	76,701	119	350

Comparison of lower wall eddy sizes with literature data [14] [15]

COMSOL	COMSOL 3.5a	Experimenta	Other
3.5a Mesh 1	Mesh 2	l data	simulation
			results
6.0	6.19	7.1	6.1

[14] 1st NAFEMS Workbook of CFD Examples. Laminar and Turbulent Two-Dimensional Internal Flows, NAFEMS, 2000.

[15]Patrick J. Roache, <u>Verification and Validation in Computational Science and Engineering</u>, Hermosa Pub., Albuquerque, NM, 1998.

- The last CFD-CHT problem deals with natural convection within a 3-D enclosure. This problem has been studied for many decades, and was one of the earliest simulations performed numerically to examine strong fluid-heat transfer coupling.
- The following figure shows the configuration of the problem, with being set to 90°C, 45°C and 0°C, respectively.

• Case 1: $\phi = 90^{\circ}$

Number of	Number of degrees	Number of	Number of degrees
elements for	of freedom for	elements for final	of freedom for
coarse mesh	coarse mesh	fine mesh	final fine mesh
1,000	38,375	8,000	284,945

Final Computational mesh

• Case 1: $\phi = 90^{\circ}$ Ra = 10⁵ at y = L/2

• Temperature contours

• Velocity vectors

Arrow: Velocity field

b.05

0.05

Comparison of Nu with literature data [16-19]

Results from	[16]	[17]	[18]	[19]
COMSOL 3.5a				
3.12	3.11	3.06-3.12	3.10	3.19-3.20

• Case 2: $\phi = 45^{\circ} \text{Ra} = 10^{5} \text{ at } y = L/2$

• Temperature contours

• Velocity vectors

Comparison of Nu with literature data [16-19]

Results from	[16]	[17]	[18]	[19]
COMSOL 3.5a				
3.54	-	3.40-3.47	3.50	3.57-3.60

Case 3: $\phi = 0^{\circ} Ra = 10^{5} at y = L/2$ Time=60 Slice: Temperature [K] 306 305 304 303 0.05 302

• Temperature contours

0.1

0.05

- · Velocity vectors
- Comparison of Nu with literature data [16-19]

Results from	[16]	[17]	[18]	[19]
COMSOL 3.5a				
2.25	3.24	3.34-3.47	2.49-3.92	3.49-4.01

301

300 Min: 300

- [16] R. Bennacer, A. A. Mohamad, and I. Sezai, Transient Natural Convection in Air-Filled Cubical Cavity: Validation Exercise, ICHMT 2nd Int. Symp. on Adv. in Comput. Heat Transfer, Palm Cove, Queensland, Australia, May 20– 25, 2001.
- [17] R. Mossad, Prediction of Natural Convection in an Air-Filled Cubical Cavity Using Fluent Software, ICHMT 2nd Int. Symp. on Adv. in Comput. Heat Transfer, Palm Cove, Queensland, Australia, May 20– 25, 2001.
- [18] E. Krepper, CHT'01: Validation Exercise: Natural Convection in an Air-Filled Cubical Cavity, ICHMT 2nd Int. Symp. on Adv. in Comput. Heat Transfer, Palm Cove, Queensland, Australia, May 20– 25, 2001.
- [19] C. Xia, J. Y. Murthy, and S. R. Mathur, Finite Volume Computations of Buoyancy- Driven Flow in a Cubical Cavity: A Benchmarking Exercise, ICHMT 2nd Int. Symp. On Adv. in Comput. Heat Transfer, Palm Cove, Queensland, Australia, May 20– 25, 2001.

Conclusions

Comparison between running COMSOL 3.5a on 32 bit machine vs. on 64 bit machine

Comparison of flow over backward facing step Re = 800 from COMSOL 3.5a

Number of	CPU time (s)	CPU time (s)	Memory (MB)	Memory (MB)
elements	(32 bit	(64 bit	(32 bit	(64 bit
	machine)	machine)	machine)	machine)
Mesh 1: 10,850	3.79	2	211	298
Mesh 2: 22,000	6.958	3	303	350

Comparison of flow over backward facing step Re = 47,648 from COMSOL 3.5a

Initial	Final	Final	CPU	CPU time	Memory	Memory
Number of	Number of	Number of	time (s)	(s)	(MB)	(MB)
degrees of	elements	degrees of	(64hit)	(32bit)	(64bit)	(32hit)
freedom		freedom	(01010)	(52010)	(01010)	(52011)
2,861	3,876	34,373	52	133.817	233	250
5,504	8,734	76,701	119	313.45	350	322
	Initial Number of degrees of freedom 2,861 5,504	InitialFinalNumber ofNumber ofdegrees ofelementsfreedom2,8615,5048,734	InitialFinalFinalNumber ofNumber ofNumber ofdegrees ofelementsdegrees offreedom76,701	Initial Number of degrees of freedomFinal Number of elementsFinal Number of degrees of freedomCPU time (s) (64bit)2,8613,87634,373525,5048,73476,701119	Initial Number of degrees of freedomFinal Number of elementsFinal Number of degrees of freedomCPU time time (s) (64bit)CPU time (s)2,8613,87634,37352133.8175,5048,73476,701119313.45	Initial Number of degrees of freedomFinalFinal Number of degrees of freedomCPU time (s)Memory (MB)2,8613,87634,37352133.8172335,5048,73476,701119313.45350

Conclusions –cont.

Benchmark	Number of	Number of degrees of	CPU time (s) Memory cost		Compared values		
0000	elements	freedom		(MB)	COMSOL	Literature data	
Case					results		
Case 1-a: Flow over circular	8,568	39,306	3,728	884	$C_{d} = 1.486$	$C_{d} = 1.3353$	
cylinder Re = 100	14,965	68,105	14,236	1,193	$C_{d} = 1.485$	see [5]	
Case 1 -b: Flow over circular	8,272	37,974	1,894	974	$C_{d} = 1.69$	$C_{d} = 1.47$ see	
cylinder Re = 1000	17,536	79,947	4,024	1,501	$C_{d} = 1.65$	[6]	
Case 2: Compressible flow	800	9,963	Multi-grid scheme has been		Pressure, veloc	ocity and density	
in a shock tube	4000	48,843	app	lied	are compared	re compared with analytical	
					solution (Fig. 33, 34, 35)		
Case 3-a: Flow over a	10,850	108,864	2	298	$L_{\text{loweddy}} = 6.8$	$L_{loweddy} = 6.1$	
backward facing step Re = 800	22,000	288,384	3	350	$L_{loweddy} = 6.7$	[12]; L _{loweddy} = 6.0 [13]	
Case 3-b: Flow over a	3,876	34,373	52	233	$L_{loweddy} = 6.0$	$L_{loweddy} = 7.1$	
backward facing step Re = 47,648	8,734	76,701	119	350	$L_{\text{loweddy}} = 6.19$	[14]; L _{loweddy} = 6.1 [15]	
Case 4-a: Natural convection	8,000	284,945	Multi-grid scheme has been		Nu = 3.12	3.10 [18]	
within a 3D enclosure $\phi =$			applied				
90°							
Case 4-b: Natural convection	8,000	284,945	Multi-grid scheme has been		Nu = 3.54	3.50 [18]	
within a 3D enclosure $\varphi =$			applied				
45°							
Case 4-c: Natural convection	8,000	284,945	Multi-grid scheme has been		Nu = 2.25	2.49-3.92 [18]	
within a 3D enclosure $\varphi = 0^{\circ}$			applied				

Comparison between XXXXXX, COMSOL and Literature Data

Benchmark	Number of cells	CPU time (s)		Compared values			
case			XXXXXX	COMSOL	Literature		
Case 1-a: Flow over	<u>16,689</u>	2,245	$C_d = 1.479$	$C_d = 1.485$	$C_d = 1.3353$ see		
circular cylinder Re = 100	14,955	3,728			[5]		
		14,236					
Case 1-b: Flow over	<u>16,689</u>	2,425	$C_{d} = 1.55$	$C_{d} = 1.65$	$C_d = 1.47$ see [6]		
circular cylinder Re =	17,536	1,894					
1000		4,024					
Case 2: Compressible	40 in x-dir		Density, veloci	sity, velocity and pressure are compared with			
flow in a shock tube	200 in x-dir		analytical solutions (Fig. 9, 10, 11)				
Case 3-a: Flow over a	12,000	Final report	$L_{loweddy} = 6.82$	$L_{loweddy} = 6.70$	$L_{loweddy} = 6.1$		
backward facing step Re = 800					$[12]; L_{loweddy} = 6.0 [13]$		
Case 3-b: Flow over a	9,600	Final report	$L_{loweddy} = 7.0$	$L_{loweddy} = 6.19$	$L_{loweddy} = 7.1$		
backward facing step Re					$[14]; L_{loweddy} =$		
= 47,648	22,000	T' 1 (NI 210	N 2.10	0.1 [15]		
Case 4-a: Natural	32,000	Final report	Nu = 3.10	Nu = 3.12	3.10[18]		
convection within a 5D enclosure $\alpha = 90^{\circ}$							
Case 4 -b. Natural	32,000	Final report	$N_{\rm H} = 3.43$	$N_{\rm H} = 3.54$	3 50 [18]		
convection within a 3D	22,000	i mai report	110 0110		5.50 [10]		
enclosure $\varphi = 45^{\circ}$							
Case 4-c: Natural	32,000	Final report	Nu = 3.43	Nu = 2.25	2.49-3.92 [18]		
convection within a 3D							
enclosure $\varphi = 0^{\circ}$							

The Future

COMSOL 4

- Compare results obtained from COMSOL Multiphysics 4 with those obtained from COMSOL Multiphysics 3.5a and other data
- Obtain the CPU times and memory costs
- Try parallel version on Cray CX1
- What's coming: multiscale, multiphysics, stochastic modeling
- Advances in h-p adaptation; meshless methods

UAV - 2008

Use of COMSOL In Aerodynamic Optimization of the UNLV Selectored Unmanned Aerial Vehicle

McElroy and Darrell W. Pepper is Vegas, Las Vegas, Nevada, USA

n iterations to reduce overall drag in all flight conditions. Concurrently, analyze a sendynamic forces incurred by non-planar lifting surfaces. configuration as well as the wing-fuselage junction to delay separation and decrease

are estimated values with numerical study for agreement. covered two-dimensional airfoil operating at low Re.

LIMMET

SIGN AND STRUCTURAL CONSIDERATIONS

The incorporation of non-planar infining surfaces can result in significant reductions in overall drag with proper design. Although winglets are usually designed to a specific flight condition, an efficient implementations should not negatively affect flight performance under most conditions. A side effect of winglets is an increase in wing bending moment, which may affect the structural make-up of the airframe.

ELAGE JUNCTION DESIGN

s design (initial and cargo-specific versions) accompanies by a m nameration of the wing Aussiage junction design.

OIL ANALYSIS

Here: $q_0 = (1 - \eta)I$ $\eta = \frac{-(T^2 - 101.5)^2}{10^3} + 0.05$

analysis, the incompressible Navier-Stoles fluid dynamics unction with the General Heat Transfer module. The heat its is dictated by the efficiency, which is a function of it is proprietary of the photovoltaic cell itself.

GENERAL COMSOL MODEL PREPAR

and the

OU's Fluid

nt and

The 3-D models use the same strategy as the 2-D models: a fluid boe is const appropriate boundary conditions are applied. In most cases the models can be For example, all of the cases could be cut in half along a plane all symmetry in Dynamics package employs the Navier-Stokes equations. The structurel proble thermal strain, made use of the Fluid-interaction Multiplying package. A rei assembled to solve these simulations.

SIMULATION RESULTS

coMSOL allowed for quick and eavy visu show the original wing configuration and next two plots show pressure dustification its incorporation. The fuselage design arm wing root, as shown in the third column to 2-D analysis results.

CONCLUSIONS

COMSOL Multiphysics 3.4 was a very sense of the COMSOL's multiphysics 3.6 was a very sense of The builts intestee had difficulting with share's Additionable, it was shown that COMSOL can all thoris are underway to migrate the shaulable to improve that they ackees.

SolidWorks - COMSOL

The Flight of COMSOL-I

Darrell W. Pepper NCACM University of Nevada Las Vegas <u>dwpepper@nscee.edu</u>

Xiuling Wang Department of Mechanical Engineering Purdue University – Calumet wangx@calumet.purdue.edu