A Numerical Study for Rubber Particles Collection Involved in New Thermoforming Composite Process Using Comsol Multiphysics

R. Carbone, A. Langella

Università degli Studi di Napoli "Federico II" - DIMP, Italy

V. Antonelli, R. Marissen Delft University of Technology, The Nederlands

COMSOL CONFERENCE MILAN, ITALY 2009 Oct. 14-16

To implement user defined *hyperelasic constitutive laws* in a numerical model to simulate a *new thermoplastic composite* (TPC) forming process and validate the models by experimental measurements

THE THERMOPLASTIC COMPOSITES (TPC)

Are made of reinforced fibres in a thermoplastic resin

ADVANTAGES:

- *I.* the TPC in laminate form can be re-heating and successively formed speed up the TPC production parts
- *II.* some well known metal forming technologies applicable to the TPC forming process **DISADVANTAGES**:
- *I.* relatively low glass transaction temperature for thermoplastic resins
- *II. the friction in the fibres reduce the layers sliding consequently the TPC formability to any part shapes*

TPC - THERMOFORMING PROCESS

The "Classic" forming process use metal and rubber matching dies to form pre-peg TPC laminate previously heated

DISADVANTAGES:

- I. low quality of corner detail
- II. barrelling effect

NEW TPC THERMOFORMING PROCESS

In the "new" forming process a collection of rubber particles replace the solid "classic" rubber die

ADVANTAGES:

I. the rubber particles behaviour as a fluid, filling almost all cavity shape

- II. only the degraded particles must be replaced
- III. new TPC parts shape require just new metal die replacement

DISADVANTAGES:

I. the low surface finishing on the side of rubber particles die

THE INVESTIGATED PARAMETERS

In this investigation three types of rubber hardness and two rubber particles geometric shape were examined

The rubber particles collection were modelled as an

- I. homogeneous continuum material by means their "macroscopic" mechanical properties
- *II.* absence of external friction (rubber particles metal die)

THERMOFORMING PROCESS: THE INVESTIGATION STEPS

NEW TPC THERMOFORMING PROCESS: THE HYPERELASTIC LAWS 1/2

Assumption of de-coupling principle:

 $W(I_1, I_2, I_3) = W_{is}(I_1, I_2, I_3) + W_{vol}(J) - I_n PRICIPAL STRAIN INVARIANTS$

$$W(\lambda 1, \lambda 2, \lambda 3) = Wis(\lambda 1, \lambda 2, \lambda 3) + Wvol(J) - \lambda n PRICIPAL STRATCHES$$

Simplified volumetric term:

$$W(J) = \frac{\kappa}{2}(J-1)$$

J – right Couchy strain tensor determinant

 κ – bulk modulus

NEW TPC THERMOFORMING PROCESS: THE HYPERELASTIC LAWS 2/2

Isochoric term:

Three constitutive laws were employed in this investigation

Mooney-Rivlin – simplest model Ι.

$$W(I_1, I_2) = C_{10}(I_1 - 3) + C_{01}(I_2 - 3)$$

- 11. Beda – for small and large stretches $W(I_1, I_2) = \sum_{i=1}^{M} \frac{C_{i0}}{i} \cdot (I_1 - 3)^i + K \cdot \ln \frac{I_2}{3}$ *III.* Ogden – adequate for large stretches

$$W(\lambda_1,\lambda_2,\lambda_3) = \sum_{i=1}^{M} \frac{\mu_i}{\alpha_i} \cdot \left(\lambda_1^{\alpha i} + \lambda_2^{\alpha i} + \lambda_3^{\alpha i} - 3\right)$$

	Mooney-Rivlin	Beda	Ogden
Number of parameter	2 + 1	M = 3, +1	M = 6, +1
Isochoric parameters	C ₁₀ , C ₀₁	С ₁₀ , С ₂₀ , С ₃₀ , К	$\alpha_1, \alpha_2, \alpha_3, \mu_1, \mu_2, \mu_3$
Volume parameters	κ	κ	κ

Confined compression tests (CC Test) were performed on the rubber particles in a cylindrical container in a quasi-static mode

NEW TPC THERMOFORMIN PROCESS: NUMERICAL vs. EXPERIMENTAL RESULTS

The results of a 2D axial-symmetric FEM model were compared to the experimental CC Tests

OBSERVATIONS:

- I. the model with higher parameter numbers (Beda and Ogden) fit better the experimental data than the Mooney-Rivlin one
- *II. the Beda and Ogden predictions perform differently with the rubber hardness*

NEW TPC THERMOFORMING PROCESS: "U-BEAM" PRESSING FORMING TEST

To value the pressure distribution on the metal die surface

TEST CONDITIONS:

- *I.* no TPC laminate between the rubber particles and metal die
- *II. room temperature test*

NEW TPC THERMOFORMING PROCESS: "U-BEAM" PRESSING FORMING SIMULATION

SIMULATION CONDITIONS:

- I. half symmetric 2D forming device
- *II.* large displacement in plane strain structural mechanics mode
- III. contact boundary condition between rubber and metal die
- IV. parameterized boundary applied load
- V. no friction contact
- VI. Beda and Ogden constitutive laws

"U-BEAM" PRESSING FORMING TEST EXPERIMENTAL VS. NUMERICAL RESULTS

The pressure distributions along the contact boundary line were acquired on the pressing device

1.

11.

I. no corner effect

II. pressure distribution independent from contact evaluation zone

pressure reduction near the corner influence of the contact line on the pressure distribution

- I. the frictionless FEM model didn't catch the experimental pressure distribution on the whole contact surfaces
- *II.* the horizontal contact zone was better fitted by Ogden model
- *III. the impossibility to predict by FEM simulation the process involving cubic rubber particles shape*

NEW TPC THERMOFORMIN PROCESS: CONCLUSIONS

The "U-beam" forming model didn't fit well the test data on the whole extension of the contact zone

- The external friction rubbermetal die contact have to be evaluated
- II. More mechanical rubber particles tests types have to be performed in order to improve the hyperelastic material constants valuation

The COMSOL Multiphisycs graphic interface was an extremely flexible tool to implement user defined constitutive material laws

R. Carbone, A. Langella – Università degli Studi di Napoli "Federico II" - DIMP, Italy V. Antonelli, R. Marissen – Delft University of Technology, The Nederlands

THANK YOU VERY MUCH FOR YOUR ATTENTION

COMSOL CONFERENCE MILAN, ITALY 2009 Oct. 14-16