Presented at the COMSOL Conference 2009 Milan

Chemical Reactions in a µ-fluidic T-Sensor: Numerical Comparison of 2D and 3D Models

15 October 2009 | Remo Winz

5cm

Why Cµ was formed:

> focus & merge expertise (chemistry, microsystems)

Cµ mission:

> explore chemical processes under develop of intelligent microsystem devices e.g. for lab-on-chip technology.

Lab-on-Chip Systems:

Combining fluidic parts with (electro-) analytical ones

Introduction

- Cµ & Lab-on-Chip
- T-Sensor

> 3D Model and 2D Projections

- Implementation
 - System Equations
 - Special requirements in 2D case

Numerical considerations in Comsol

- Comparison 2D / 3D
- Conclusion & Outlook

3D T-Sensor with Reaction

Сµ

Sensor Design

Projections from 3D to 2D

Projection P_1 :

Sensor Load:

 P_1

 P_2

The Mathematical Model

Cµ

Diffusion:	0.45e-9 m ² /s	Inlet Concentration:	1e-3 mol/m ³
Velocity:	6.6e-4 m/s	Receptors density:	3.32e-6 mol/m ²
Adsorption:	4.4e4 m ³ /mol/s		≈ 2 rec./nm²
Desorption:	1e-1 1/s	Degrees of Freedom:	~ 650.000 (P ₂)

Numerics & Implementation

Aim: Receive a stable and precise solution

Refined mesh in the region of strong kinetics

Numerical stabilization techniques

Direct vs. iterative Solvers

Solvers: PARDISO and GMRES (with ILU precond.) Computational Times: GMRES increasingly slow Accuracy: negligible influence

Ľи

fixed time steps
increasing effort

Accuracy

Ľи

compared with
'best' solution
no significant
improvement
major error at plug

Slide 12

Ľu

Mean Sensor Load 3D Simulation

14 July 2009

Adjusting k_f

Сµ

Comparison of Comsol and deal.II

Comsol Model
Streamline diffusion used

deal.II Model
uses Upwind scheme
fixed time stepping

Concentrations
 < 0.1 % of c_{max} dropped
Comparison of
 concentrations

Ĩ