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Objective

Develop a COMSOL simulation that incorpo-
rates complications such as those shown here:
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Figure 1 Schematic views of meridional sections
of Ri (left panel) and Q (right panel). In the left
panel the light blue region is a section of Rc and
the dark blue region is a section of Ri\Rc. The
short white segment there is a section of the di-
aphragm, Sd.



Cylindrical coordinates
in physical and proxy

domains via Kelvin Inversion
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Field equations in three domains

In the vortex core, Rc:
r(m) •[(1/r)r(m) ] = Ar ,

in which the velocity components (ur, uz) satisfy
ur = (1/r)@ /@z, uz = �(1/r)@ /@r and A is
a constant. In the bounded region of irrotational
motion, Ri\Rc:

r(m) •(rr(m)�) = 0 ,

in which ur = @�/@r, uz = @�/@r. In the proxy
exterior, Q:

r(m)
q •[$(a2/q2)r(m)

q �] = 0 .



Conditions on the portal

Let @(Ri\Rc)> be the outer boundary of Ri\Rc

and think of @(Ri\Rc)> and @Q as two sides
of a portal. Condition 1 there is a Dirichlet
condition for � on @Q, which equates it to the
value of � on @(Ri\Rc)>. Condition 2 there
is a Flux/Source boundary condition for � on
@(Ri\Rc)>, namely
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whose right member is the value of the left mem-
ber after Kelvin Inversion and evaluation on @Q.



Conditions on the
boundary of the core

The vortex ring propagates with velocity �W k̂
(W � 0) and the boundary of its core in im-
permeable. On the exterior side of that bound-
ary the impermeability condition amounts to a
Flux/Source condition for �; On the interior
side of that boundary the impermeability condi-
tion amounts to a Diriclet condition for  .



Circulation, C, about the
core and its relation to A

Consider an oriented close contour L that em-
braces the core once and let ut be the tangen-
tial component of the fluid velocity on L. Define
C—called the circulation about L—by the inte-
gral

R
L ut ds, in which ds is the di↵erential arc

length on L and let � be the radius of a circu-
lar disk whose area equals that of a typical cross
section of the vortex core. One may then show
that

A = C/(a⇡�2) .



On the far field dipole strength, G

Let the fluid velocity, r�, satisfy r� ! 0 as
R ! 1. If, as here, there are no sources the far
field behavior of � has the asymptotic form

� = �1 + G •r[1/(4⇡R)] + O(R�3) ,

in which G = G1 + G2, in which

G1 :=
ZZ
S

�n̂ dA , G2 := �
ZZ
S

R(u • n̂)dA .

Here G = �Gk̂, G > 0.



Normalizations

Let a be the value of r at the centroid of a typ-
ical cross section of the ring. In the simulations
reported herein I took a = 1m, G = 1m4/s, and
� = a/2.

Let v denote the fluid velocity as seen by
an observer moving with the ring and let �vt be
the corresponding slip velocity across the core
boundary. In the problem posed herein �, W ,
and C are all bilinear functions of the plunge
velocity, W and the circulation C.



(C W )T as the solution
of a matrix equation

From the foregoing bilinearity properties we have

GCC + GW W = G ,

(�vt)CC + (�vt)W W = �vt .

If the slip velocity at the inner equator, (�vt)ie,
is set equal to zero and G = 1m4/s we have
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Figure 2 Distributions of the slip velocity across
the core boundary in three cases, namely: cir-
culation without plunge (green curve), plunge
without circulation (blue cuve), and circulation
and plunge with zero slip at inner equator (red
curve)



Use of the Moving Mesh Interface

In the present simulaton COMSOL’s Geome-
try Sequence generates a reference core whose
cross section is a circular disk of area ⇡�2 and
centroidal radius a. COMSOL’s Moving Mech
interface then transforms the reference core to
one with a general noncircular cross section us-
ing formulas derived to ensure that the cross sec-
tional area and the centroidal radius are again
equal to ⇡�2 and a, respectively.



Control variables

This general noncircular cross section is a (trans-
lated and rescaled version of) the interior of the
following parametric curve

R@1 = a + P@ cos↵ , Z@1 = P@ sin↵ ,

in which P@ = �
⇥
1 +

PN
1 ✏n cos(n↵)

⇤
and in

which the coe�cients ✏n, n 2 {1, . . . , N} are
shape parameters that will be control variables
in an optimization problem.



Objective Function

The objective function F in the optimization
problem is

F = C�2

Z
@Dc

(�vt)2ds ·
Z

@Dc

ds

in which Dc is a typical meridional cross section
of Rc.



Figure 3 Legend same as that of Fig. 2 except
that this time, the results shown are for a non-
circular core shape after optimization to mini-
mize slip across the core boundary in the case
of circulation and plunge with zero slip at inner
equator.



Computation of  in Ri\Rc

Having ur = @�/@r and uz = @�/@z in Ri\Rc

I computed the corresponding Stokes stream
function  by specifying
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in the input field for a Weak Form PDE Physics
interface. I set  = 0 on r = 0 (all z) and ac-
cepted the default Null Flux boundary condi-
tions on the core boundary and the portal.



Figure 4  in Di relative as seen by an ob-
server at rest relative to the remote undisturbed
fluid. The white contour is the core bound-
ary. The increment of  between contours is
0.04⇥ 10�3 G/a2.



Figure 5 Legend similar to that of Fig. 4, ex-
cept that now the results are as seen by an ob-
server propagating with the ring.


