COMSOL CONFERENCE 2018 LAUSANNE

UNIVE UN

DIPARTIMENTO

Mazars' damage model for masonry structures: a case study of a church in Italy

A. De Falco¹, M. Mori^{*1}, G. Sevieri²

1 Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy), 2 Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).

*Corresponding Author: largo L. Lazzarino, 1 - 56126 Pisa, morimatteo123@gmail.com

Seismic assessment of historical buildings

Goal:

• Safeguard of integrity and conservation

Challenges:

- Lack of knowledge of internal structure of walls, arches and vaults
- Huge variety of building techniques throughout history
- Strong nonlinear behavior

Structural modeling

Material properties: Masonry

- Low to negligible tensile strength
- Development of cracks
- Possibly high compressive strength

Modeling challenges

- Strongly nonlinear material
- Asymmetric behavior
- History dependent
- Variation of stiffness and dynamic properties

Images from: A. Bernardini, <u>La vulnerabilità degli edifici: valutazione a</u> <u>scala nazionale della vulnerabilità sismica</u> <u>degli edifici ordinari</u> CNR-Gruppo Nazionale per la Difesa dai Terremoti - Roma, 2000, 175 pp

Modeling approaches for cracking

Geometric approach The crack and its evolution are defined by geometric entities	 Meshfree methods Adaptive BEM/FEM Lattice methods Particle methods 	
Non-geometric approach	 Constitutive methods: Continuum Damage Method (CDM) Element Extinction Method, 	
The crack is introduced	 Kinematic methods: Enriched EEM 	
properties	• XFEM,	

Mazars' damage model (CDM)

J. Mazars, G. Pijaudier-Cabot, Continuum damage theory - application to concrete, J. of Eng. Mech., ASCE, 115(2), 345–365 (1989).

• Damage variable *d*:

$$E^{d} = E_{0} \cdot (1 - d)$$
$$d = \alpha_{t}d_{t} + \alpha_{c}d_{c}$$

- E^d = Damaged Young's modulus
- Weighting coefficients:

$$\begin{split} \alpha_t &= \sum_{i=1}^3 \left(\frac{\langle \varepsilon_i^t \rangle \langle \varepsilon_i \rangle}{\tilde{\varepsilon}^2} \right)^{\beta} \quad \text{and} \quad \alpha_c = \sum_{i=1}^3 \left(\frac{\langle \varepsilon_i^c \rangle \langle \varepsilon_i \rangle}{\tilde{\varepsilon}^2} \right)^{\beta} \quad, \\ \tilde{\varepsilon} &= \sqrt{\sum_{i=1}^3 (\langle \varepsilon_i \rangle_+)^2} \end{split}$$

• Tensile and compressive damage:

$$d_t(\kappa) = 1 - \frac{\kappa_0(1 - A_t)}{\kappa} - A_t e^{-B_t(\kappa - \kappa_0)}$$

$$d_c(\kappa) = 1 - \frac{\kappa_0(1 - A_c)}{\kappa} - A_c e^{-B_c(\kappa - \kappa_0)}$$

 $\kappa = \max(\kappa_0, \tilde{\varepsilon})$: State variable to store the maximum tensile strain.

5 material parameters: A_c , B_c , A_p , B_p , κ_0

Mazars' damage model (CDM)

J. Mazars, G. Pijaudier-Cabot, Continuum damage theory - application to concrete, J. of Eng. Mech., ASCE, 115(2), 345–365 (1989).

• κ_0 : Initial damage threshold, can be defined as a function of maximum tensile strength f_t as:

$$\kappa_0 = \frac{f_t}{E_0}$$

- A_c, A_t : Residual strength ratio to peak strength
- *B_c*, *B_t*: peak strength and softening branch steepness

Mazars' model: COMSOL Implementation

COMSOL Functionality: Structural Mechanics module, *External Stress-Strain Relation (DLL) written in C code*

2D Test case

• Basic arch model loaded at keystone:

Plot: Third principal stress (compression) streamlines and equivalent Young modulus $E^d = E_0 (1-d)$

From: "Collapse displacements for a mechanism of spreading-induced supports in a masonry arch", Simona Coccia, Fabio Di Carlo, Zila Rinaldi, Department of Civil Engineering, University of Rome "Tor Vergata", Rome, Italy - DOI 10.1007/s40091-015-0101-x

Modeling strategies:

- Gradual ramping of external load with *auxiliary sweep* functionality
- Jacobian update on every iteration
- *Global equation* with auxiliary variable to achieve displacement controlled load increment

Results:

- Damage initiation at keystone at the intrados
- Successive Damage at quarters
- 5-hinge collapse mechanism

Case study: San Prospero di Monzone church

Static analysis under self weight load

3 scenarios:

- Elastic reference model
- Mazars' damage model without tie rods
- Mazars' damage model with tie rods

Tie rod modeling:

- Shell interface
- Solid-Shell Multiphysics coupling
- Elastic diffusion zone

```
\mathbf{u}_{\mathrm{so}} pprox \mathbf{u}_{\mathrm{sh}} + z_{\mathrm{l}} \mathbf{a}_{\mathrm{sh}} on \partial \Omega_{\mathrm{so}}
```

such that
$$-\frac{d}{2} + z_{\text{offset}} < z_{\text{I}} < \frac{d}{2} + z_{\text{offset}}$$

Static analysis under self weight load: results

Plot: solid.dSde11*(nu0+1)*(2*nu0-1)/(nu0-1)

Equivalent Young's Modulus = E^d

Static analysis under self weight load: results

Plot: solid.dSde11*(nu0+1)*(2*nu0-1)/(nu0-1)

Equivalent Young's Modulus = E^d

Damaged Young's Modulus

MPa

 $\times 10^3$

7

6

5

3

2

1

• Without tie rods

• With tie rods

Modal analysis

Solver linearization point: Computation of eigenmodes considering tangent stiffness: $E^d = E_0 \cdot (1-d)$

Elastic	Mazars damage model	Mazars damage model + tie rods
10.5	8.8	9.6
14.5	10.3	12.1
19.0	16.1	17.3
21.5	18.1	19.8
24.0	18.9	20.4
25.8	19.5	21.9

First three eigenmodes deformed shapes, tie rods model, elastic case (left) and Mazars (right).

<u>Transient analysis</u> <u>Tie rods model</u>

Recorded seismic event from National Accelerometric Network, Fivizzano station (FVZ) on 21 June 2013 (main shock at UTC 10:33).

Damage development from the vaulted structures and at connection between facade and ceiling and triumphal arch.

<u>Post-transient modal analysis</u> <u>Tie rod model</u>

Observations:

- Strong frequency shift due to additional damage
- Variation in mode shapes
 - 1° mode: Localization of deformation
 - 2° mode: Three quarter wavelength along walls

First three eigenmodes deformed shapes, selfweight model (left) and post time history (right).

Conclusions:

- 3D FE Model of a masonry structure
- Adoption of Mazars' damage model via COMSOL's external material functionality
- Evaluation of structural damage
- Evaluation of damage influence on dynamic properties

Considerations:

- Mazars' model successfully captures damage from monotonic load histories
- Underestimation of structural resources for cyclic loads (crack closure effects)

Further developments:

- Implementation of Mazars µ-model for cyclic loads
- Fine tuning of material parameters through accurate fracture toughness considerations and fracture energy evaluation

COMSOL CONFERENCE 2018 LAUSANNE

DIPARTIMENTO UNIVERSITÀ DI PISA

ell'Energia, dei Sistemi Territorio e delle Costruzion

THANK YOU FOR YOUR ATTENTION

Mazars' damage model for masonry structures: a case study of a church in Italy

A. De Falco¹, M. Mori^{*1}, G. Sevieri²

1 Dept. of Energy, Systems, Territory and Construction Engineering, Pisa Univ. (Italy),

2 Dept. of Civil and Environmental Engineering, Florence Univ. (Italy).

*Corresponding Author: largo L. Lazzarino, 1 - 56126 Pisa, morimatteo123@gmail.com