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Abstract: Students in engineering and science
are often exposed early in their studies to non
dimensional analysis. This is particularly true
in the areas of fluid mechanics and heat trans-
fer where most experimental correlations are
expressed in terms of non dimensional groups
and many numerical analysis involve the so-
lution of non dimensional equations. When it
comes to solving fluid flow/heat transfer prob-
lems, many solutions, particularly industrial
ones, are based on finite element/finite vol-
ume programs that use dimensioned quanti-
ties. In order to compare to reference informa-
tion one would like to use codes like COMSOL
Multiphysics (basically a dimensional code)
to solve non dimensional problems. Unfortu-
nately there are many ways of non dimension-
alizing the problem and it is not clear which
is best. For example in convection a refer-
ence velocity can be expressed as ν/L

√
Gr,

ν/L
√
Ra, ν/L

√
Re, ν/L, or α/L where ν and

α are the kinematic viscosity and thermal dif-
fusivity and L is some length scale and Re,
Gr and Ra are the Reynolds, Grashof and
Rayleigh numbers. The different choices lead
to different solution techniques, particularly
for highly non linear problems and to differ-
ent interpretations. Some non dimensionaliza-
tions are more appropriate than others. The
paper describes numerical experiments com-
puting a highly transient free convection flow,
compares dimensionless and dimensional re-
sults, the solution techniques used, and dis-
cusses which and why specific choices of non
dimensional groups are more appropriate to
different flow situations.
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1 Introduction

Using a dimensioned code like COMSOL to
compute non-dimensional solutions may be
useful for many reasons. One key reason might
be to compare to a benchmark solution or to
calibrate with a key dimensionless parameter.

To illustrate one method of comparison an
example problem for natural convection in a
tall cavity has been developed with a known
dimensionless solution. The benchmark solu-
tion is then compared to a traditional CFD ap-
proach that might be contemplated by many
users of a tool like COMSOL where a dimen-
sioned solution is considered. The boundary
conditions for the example problem are shown
in Figure 1.

Several dimensionless parameters are used
to characterize the flow. The Rayleigh num-
ber (Ra) is defined below and is often used
in buoyancy flows to characterize the transi-
tion between conduction dominated flow and
convection dominated flow. The Prandlt num-
ber (Pr) is the ratio of the viscous diffusion
and thermal diffusion. For this work, only the
value of Pr = 0.71 (representative of air) is
considered and Ra = 2.5e7.

Ra =
ρ2gcpβ(∆T )L3

kµ
(1)

cp is the heat capacity of the gas, g is the
acceleration of gravity, β is the isobaric coef-
ficient of thermal expansion, µ is the dynamic
viscosity, k is the thermal conductivity, and ρ
is the density.

Pr =
cpµ

k
(2)

The critical Rayleigh number (Rac) is an
important value for comparisons to experi-
mental work. It is defined as the Rayleigh
number at which the flow transitions from
one stability regime to another, correspond-
ing to the transitions from the conduction
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(a) Schematic of the computational domain. (b) Boundary conditions.

Fig. 1: Linear temperature profile applied to the vertical walls of the annulus.

dominated regime to convection dominated
regime. In this example case problem the
critical Rayleigh number characterizes the for-
mation of cells with oscillatory temperatures.
The heat transfer across the cavity is usually
reported in terms of the Nusselt number (Nu),
which is the ratio of the convective heat trans-
fer coefficient to the conduction heat transfer
coefficient.

Dimensionless analysis in natural convec-
tion is often further complicated by the use
of the Boussinesq approximation that is used
to further simplify the governing equations for
the system. This approximation is also consid-
ered in the results presented and is discussed in
more detail by Tritton [18]. Table 1 gives an
overview of the common dimensionless num-
bers used in natural convection flows.

Parameter Equation Description

Grashof Gr = gβ(∆T )L3

ν2 Ratio of buoyancy forces to viscous forces.
Nusselt Nu = hL/k Ratio of convection to conduction heat transfer in the fluid.
Peclet Pe = RePr Ratio of the rate of advection to the rate of

diffusion in the fluid.
Prandtl Pr = cpµ/k Ratio of the momentum and thermal diffusivities.
Rayleigh Ra = gβ(∆T )L3

να The product of Pr and Gr. Fluid specific
ratio of buoyancy forces to viscous forces.

Reynold Re = ρV L
µ Ratio of inertial forces to viscous forces.

Table 1: Summary of important dimensionless parameters in natural convection.



Author Year A Description

De Vahl Davis [5] 1983 1 Benchmark solution for a square cavity.
Lee and Korpela [9] 1983 0-1000 Reported Nu and streamfunctions.
Chenoweth and Paolucci [2] 1986 1-10 Compared ideal gas and Boussinesq.
Suslov and Paolucci [17] 1995 ∞ Non-Boussinesq impact

on stability, considered Rac with ∆T .
Mlaouah et al. [11] 1997 1 Compared Boussinesq, ideal gas,

and low Mach approximation.
Paillere et a. [13] 2000 1 Compared Boussinesq

and low Mach approximation.
Xin and Le Quere [20] 2002 8 Benchmark study reported Rac.
Christon et al. [3] 2002 8 Comparison study of

methods, grids, etc.
Reeve et al. [16] 2003 10 Commercial code FIDAP.
Vierendeels et al. [19] 2003 1 Benchmark with ideal gas.
Xin and Le Quere [21] 2006 1-7 Investigated instabilities.
Dillon et al. [6] 2009 8-33 Dimensioned benchmark study

in rectangular cavity, COMSOL.

Table 2: Summary of experimental and computational natural convection studies in a tall cavity (annular
and rectangular geometries) for Pr = 0.71.

For natural convection studies in a cavity
several parameters are used to characterize the
systems. The geometry of the cavity is repre-
sented by the height H, the width L, the as-
pect ratio (A) and the radius ratio (η). For
the computational work described in this pa-
per the aspect ratio considered was A = 10
and the radius ratio was η = 0.6. Ro and Ri
are the outer and the inner radius of the an-
nulus, respectively.

A =
H

L
(3)

η =
Ro

Ri
(4)

2 Literature

The literature has shown that the stability of
the flow in a cavity is governed by the Prandtl
number, the Rayleigh number and the geom-
etry of the cavity. At small Rayleigh num-
bers the flow is dominated by conduction. As
the Rayleigh number is increased the flow be-
comes unstable, first resulting in multicellu-
lar secondary flow patterns, and then as the
Rayleigh number is further increased the flow
becomes chaotic.

The focus in most experimental and com-
putational work is on small aspect ratio cavi-
ties (A = 1 − 5) including de Vahl Davis [5].
For small aspect ratios the flow is not multi-
cellular and is time invariant.

The computational models for this prob-
lem are summarized in Table 2. All the
computational studies, unless otherwise noted,
used the Boussinesq approximation. As early
as 1986 authors considered the impact of the
Boussinesq approximation and compared it
to a full ideal gas simulation ([2] and [17]).
Mlaouah et al. [11] also compared the Boussi-
nesq approximation to the low-Mach approxi-
mation.

Some authors ([14] and [7]) predict an
oscillatory time-dependent instability for tall
cavities. Lee and Korpela [9] and Liakopoulos
[10] predict that a stationary instability pre-
cedes the onset of oscillatory convection for
high aspect ratios. Suslov and Paolucci indi-
cate that this observation is simply a product
of temperature invariant air properties [17].
They also observe that two modes of instabil-
ity are possible depending on the magnitude
of the temperature difference between the hot
and cold wall.

In a similar work Chenoweth and Paolucci
[2] observed that as the temperature differ-



ence in the cavity increases, a lower critical
Rayleigh number is found. They confirmed
that the nature of the instability changes with
increasing temperature difference.

Many of these results imply that a purely
dimensionless approach to natural convection
does not fully capture the temperature depen-
dent nature of the air properties which may
impact the computed natural convection be-
havior. However many of the key benchmarks
in the field use dimensionless simulations and
the Boussinesq approximation, so performing
comparison simulations may be of interest to
many researchers.

3 Solution Methods

Two specific types of problems were consid-
ered for this paper, a traditional dimensionless
simulation and a practical dimensioned simu-
lation. Both solutions were developed using
the COMSOL Multiphysics package 3.5a.

3.1 Governing Equations

The buoyancy driven flow is modeled as a cou-
pled system with fluid motion (Navier Stokes),
convection and conduction heat transfer. The
governing equations are given in Equations 5-
8.

The boundary conditions for the system
are specified as adiabatic on the upper and
lower cavity boundaries. The right and left
walls are constrained as varying linearly in the
z-direction.

The weakly compressible Navier Stokes
equation for this system is given in simplified
form.

ρ
∂u

∂t
+ ρ(u · 5)u = (5)

5 · (−pI + η(5u+5uT ))
−(2η/35 ·u)I + F

5 ·u = 0 (6)

5 ·(c · ψ) = 0 (7)

In this form u represents the velocity vec-
tor of the fluid, ρ is the fluid density, η is the
dynamic viscosity of the fluid, and F is the

force applied to the fluid, c is the diffusion
coefficient and ψ is the streamfunction. The
force term is varied depending on which type
of analysis is applied.

The heat transfer convection is governed
by Equation 8.

ρcp
∂T

∂t
+5 · (−k5 T ) = −ρcpu · 5T (8)

For this equation k is the thermal conduc-
tivity, cp is the heat capacity at constant pres-
sure, and T is the temperature.

3.2 Air Properties

The effect of the variable density in natu-
ral convection systems is often represented by
the Boussinesq approximation. The Boussi-
nesq approximation is used for computational
problems of this type to simplify the forma-
tion of the coupled Navier-stokes equations.
The approximation assumes that density vari-
ations are small in the fluid except in evalu-
ating the buoyancy force (gravity multiplied
by density). In general, the Boussinesq ap-
proximation is only valid when the tempera-
ture differences in the system are small (less
than 28oC for air).

For the system considered in this work
the Boussinesq approximation is valid, how-
ever some authors did observe different results
when the air was treated as an ideal gas ([2]
and [17]). For this reason the Boussinesq ap-
proximation was used for the dimensionless
analysis and compared to treating the air as
an ideal gas in the dimensioned analysis.

Other fluid properties (k, cp, µ) were all
temperature independent as defined by Reeve
[15].

3.3 Spatial Discretization

For this analysis a grid resolution study was
conducted to determine the required mesh
density and to compare the results with those
of Reeve [16] using FIDAP. The mesh refine-
ment study did not include the time step pa-
rameter because in COMSOL the best results
are achieved using a dynamic time step calcu-
lated by the software based on the CFL num-
ber.



Author Characteristic Description
Velocity

α
L = k

ρcpL
Thermal diffusion velocity.

De Vahl Davis [5]
√
βg∆TL√
Gr

= µ
ρL Viscous diffusion velocity.

Ostrach [12]
√
βg∆TL For strongly coupled flows Pr < 1 and

√
Gr > 1

Ostrach [12]
√
βg∆TL√
Pr

For strongly coupled flows Pr > 1 and
√
Gr > 1

Wan Hassan [8] αRa1/4

L = kRa1/4

ρcpL
Based on boundary layer thickness and thermal
diffusion velocity.

Abrous [1] µRa1/4

ρL Based on boundary layer thickness and viscous
diffusion velocity.

Table 3: Summary of characteristic velocity for natural convection systems. Adapted from Cochran [4].

The rectangular mesh system used for the
COMSOL results is the same as the mesh
used by Reeve. The triangular mesh type de-
notes the dynamic free meshing system built
into COMSOL. In general, the free mesh is
more robust for natural convection problems
because COMSOL automatically refines the
mesh in the corners of the domain to capture
boundary layer effects. Agreement between
FIDAP and COMSOL is good for the rect-
angular meshes. Results for the 1120 element
triangular mesh were also consistent with the
results of Reeve and this triangular mesh was
adopted for future computations because the
convergence of the system was more robust.

4 Dimensionless Options

Many options are available for creating a
dimensionless system in natural convection.
The way a non-dimensional system is defined
should not change the total result in the sys-
tem. However, depending on the way the sys-
tem is scaled numerical rounding may influ-
ence the accuracy of the result. Although each
result will scale between 0 and 1 the precision
of the values may change the results slightly
based on the computational tool and number
of significant figures carried in each calcula-
tion.

The definition of the characteristic velocity
is a key element in the dimensionless system

with options shown in Table 3. For weakly
coupled systems the characteristic velocity is
usually based on the forced convection in the
system. For strongly coupled (natural convec-
tion or buoyancy driven) flows Ostrach [12]
recommends different forms of the characteris-
tic velocity depending on the Prandtl number.
For this work only the first form is of inter-
est because all simulations are for Pr = 0.71.
Other important characteristic velocities are
listed including the viscous diffusion velocity
used by De Vahl Davis [5] and the thermal dif-
fusion velocity. Wan Hassan and Abrous use
variations of these forms that are similar for
gases but may diverge significantly from one
another for other fluids.

Three options are outlined in Table 4. For
consistency with prior work this system was
modeled using dimensionless parameters and
the Boussinesq approximation. The height of
the cavity H is the characteristic length and
the temperature difference between the hot
and cold wall is the characteristic tempera-
ture, ∆T = (Th − Tc). Based on these charac-
teristics the dimensionless spatial coordinates
(Z,R), velocities (U, V ), time (τ), tempera-
ture (Θ) and pressure (P ) are given in Ta-
ble 4 as they would need to be implemented
in a tool like COMSOL. The COMSOL doc-
umentation provides instructions only for im-
plementing the Boussinesq approximation for
dimensioned flows.



Parameter Option 1 Option 2 Option 3
Strongly coupled Weakly coupled

R, Z r
H , zH

r
H , zH

r
H , zH

U u
α
L

√
RaPr

u√
gβ∆TH

u
uforced

V v
α
L

√
RaPr

v√
gβ∆TH

v
uforced

Θ T−Tc
∆T

T−Tc
∆T

T−Tc
∆T

τ t
√
gβ∆T/H

P pL

µαL
√
RaPr

ρ
√

Ra
Pr 1 1

cp Pr 1 1

µ 1
√

Pr
Ra

1
Re

g 1
β 1 1 NA
k 1 1√

RaPr
1
Pe

F (T − Tc)
√

Ra
Pr

√
Ra
Pr Re

Table 4: Summary of dimensionless parameter implementation in a dimensioned tool.

5 Results

The simulation of natural convection in a tall
annulus at Ra = 2.5e7 results in a steady,
oscillatory behavior. Figures 1- 3 give an
overview of the streamfunction and temper-
ature contours for the simulation solution for
Option 1, dimensionless analysis. The period
and amplitude of the temperature oscillations
in the center of the cavity are computed to
compare the dimensioned and dimensionless
options.

The results for the simulation when per-
formed with Option 1 of the simulation tech-
niques discussed above are shown in Table 5.
Option 3 is not considered because the sam-
ple simulation is only for natural convection
(strongly coupled) flows. The dimensionless
version compares well with the dimensioned
version in COMSOL. The dimensioned simu-
lation was run with very low temperature dif-
ferences (1K) to reduce any error that might
result from linearization of the density in the
Boussinesq approximation. The small errors
that result in the dimensioned solution when
compared to the dimensionless solution for the
Boussinesq version are due in part to rounding
error in the calculation of the Rayleigh number
and values of the air constants.

Figure 1: Dimensionless temperature at the
center of the cavity over time. Ra = 2.5e7,

A = 10 and η = 0.6.

As expected, the ideal gas solution is very
close to the Boussinesq solution for the small
temperature difference considered (less than
1K) however the critical Rayleigh number and
oscillation shape may change as the temper-
ature difference is increased. When temper-
ature variations in the conductivity, heat ca-
pacity and viscosity were simulated the ampli-
tude of the oscillation changed more than did
the frequency. This is consistent with the ex-
pectation that the air properties may alter the
buoyancy effect on the hot and cold sides as
the temperature variations in the field adjust
the properties.
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Fig. 2: Sequential contour plot of the stream function illustrating oscillation of the natural convection
cells through one period (Π). Ra = 2.5e7, A = 10 and η = 0.6.
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Fig. 3: Sequential contour plot of the temperature (Θ) illustrating oscillation of the natural convec-
tion cells through one period (Π). Ra = 2.5e7, A = 10 and η = 0.6.



Description Rayleigh Density k, cp, µ Period Amplitude

Option 1 [16] 2.5e7 Boussinesq Constant 16.15 0.1285
Option 1 2.5e7 Boussinesq Constant 16.126 0.1278
Dimensioned 2.5e7 Boussinesq Constant 16.116 0.1279
Dimensioned 2.5e7 Ideal Gas Constant 16.161 0.1277
Dimensioned 2.5e7 Ideal Gas T dependent 16.161 0.1253

Option 1 4e7 Boussinesq Constant 11.0703 0.1484
Dimensioned 4e7 Boussinesq Constant 11.0091 0.1485
Dimensioned 4e7 Ideal Gas Constant 11.0091 0.1485
Dimensioned 4e7 Ideal Gas T dependent 11.0091 0.1481

Option 1 10e7 Boussinesq Constant 7.1860 0.1361
Dimensioned 10e7 Boussinesq Constant 7.0917 0.1362

Table 5: Comparison of simulation options in COMSOL for A = 10 and η = 0.6 in the center of the air
cavity. Each simulation was performed with the 1120 element triangular mesh except the results of Reeve

[16]. The dimensioned results have been converted to non-dimensional units based on the definitions in
Table 4

Temperature dependent results for Ra =
10e7 are not presented because the simula-
tions showed the flow to be significantly dif-
ferent in character from the constant property
solutions. In general, simulations using tem-
perature dependent properties follow a differ-
ent solution path as the Rayleigh number is
increased. This is a function of the intrinsic
chaotic behavior of the system. This phenom-
ena has also been observed at higher Rayleigh
numbers when the Boussinesq approximation
is used [16]. The complexities of the chaotic
behavior are documented in a future publica-
tion.

6 Conclusions

The results for natural convection in a tall
cavity with linear boundary conditions are re-
ported and agree well with the results of Reeve
[16]. Oscillatory flow is predicted with a trian-
gular free mesh with 1120 elements that agrees
well with the rectangular mesh used in prior
work. The natural convection flow creates a
multi-cellular flow pattern which creates regu-
lar temperature oscillations in the air cavity.

Using the commercial tool COMSOL it
has been shown that for a cavity with linear
temperature boundary conditions the dimen-
sioned and dimensionless solutions agree well
using the Boussinesq approximation. Using
the ideal gas equation has a very small im-
pact as long as the temperature difference is

small but near the Boussinesq limit simula-
tions should use ideal gas rather than Boussi-
nesq since the computational time increase is
very small in modern systems.

In all the cases considered the variation of
other air properties (k, cp, µ) with tempera-
ture had a larger impact on the solution than
other modeling decisions. This result is consis-
tent with prior authors ([17]) who found that
the behavior of the oscillatory phenomena in
cases like the one considered is dependent on
variation of air properties with temperature.
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