

Advanced simulation in medicine and biology: Opportunities for multiphysics modeling

Steven Conrad, MD PhD Louisiana State University Health Sciences Center Shreveport, LA

'Traditional' modeling approaches in medicine and biology

- ODE-based lumped compartmental models
 - Mass transport in artificial organs / body systems / intracellular
 - Chemical reactions involving fluids and electrolytes
 - Heat transport in the body
 - Electrostatic discharge from the body
 - ...
- Limitations
 - Many underlying assumptions
 - Constrained to specific operating conditions

Arteriovenous carbon dioxide removal model schematic

Gas

out

Mathematical model description

I LSU Health Scie

$$\begin{aligned} \mathcal{Q}_{alv} &= \int_{0}^{t} \left[D_{L}CO_{2} \cdot \frac{\partial PCO_{2}}{\partial x} - C_{alv}CO_{2} \cdot V_{E} \right] dt \\ \mathcal{Q}_{pul_{i}} &= \int_{0}^{t} \left[\left(C_{pul}CO_{2_{i-1}} - C_{pul}CO_{2_{i}} \right) \cdot F_{pul_{i}} - D_{L}CO_{2} \cdot \frac{\partial PCO_{2}}{\partial x} \right] dt \\ \mathcal{Q}_{tis} &= \int_{0}^{t} \left[VCO_{2} - D_{T}CO_{2} \cdot \frac{\partial PCO_{2}}{\partial x} \right] dt \\ \mathcal{Q}_{cap} &= \int_{0}^{t} \left[\left(C_{art}CO_{2} - C_{ven}CO_{2} \right) \cdot F_{cap} + D_{T}CO_{2} \cdot \frac{\partial PCO_{2}}{\partial x} \right] dt \\ \mathcal{Q}_{bld_{i,j}} &= \int_{0}^{t} \left[\left(C_{art}CO_{2} - C_{dev}CO_{2} \right)_{i,j} \cdot \frac{F_{dev_{i,j}}}{n_{b}} - \frac{D_{D}CO_{2}}{n_{b} \cdot n_{g}} \cdot \frac{\partial PCO_{2_{i,j}}}{\partial x} \right] dt \end{aligned}$$

$$Q_{gas_{i,j}} = \int_{0}^{t} \left[\left(C_{in} CO_2 - C_{out} CO_2 \right)_{i,j} \cdot \frac{F_{gas_{i,j}}}{n_g} + \frac{D_D CO_2}{n_b \cdot n_g} \cdot \frac{\partial PCO_{2_{i,j}}}{\partial x} \right] dt$$

Carbon dioxide removal simulations

Clinical application

LSU

Health Sciences Center

Recent modeling approaches in medicine and biology

- Single physics finite element analysis
 - CFD of blood flow in blood vessels and pumps
 - CFD of gas transport in the lungs
 - Heat transport in organs
 - Fluid-structure interaction in the brain
 - Musculoskeletal stress and strain
- Highly focused studies

LSU

Health

Sciences Center

LSU

Health Sciences Center

Hemodiafilter Design

COMSOL example – separation through dialysis

- COMSOL model library
- Axisymmetric hollow fiber geometry
- Solute transport through the membrane by diffusion

NCes

Diffusive vs. convective transport

- Hemodialysis (traditional)
 - Focus on diffusive transport
 - Lower porosity membranes
 - Removal of small, readily diffusible solutes thought solely responsible for toxicity of renal failure
- Hemofiltration
 - Focus on convective transport
 - Higher porosity membranes
 - Removal also of larger solutes ('middle molecules') now known to contribute to toxicity of renal failure
- Combined therapies now common

Governing principles for modeling

- Small channel blood flow (r \approx 120 µm)
 - Applied flows/pressures to blood side
 - Non-Newtonian properties of blood
 - Blood viscosity varies
 - Hemoconcentration
 - Axial alterations in blood density and viscosity
 - Blood cell skimming behavior (Fahraeus-Lindqvist)
 - Radial alterations in blood density and viscosity
- Presence of proteins in blood phase
 - Influence convection from osmotic pressure
 - Additional axial alterations in density, viscosity and osmotic pressure

Governing principles for modeling

- Solute characteristics
 - Partitioning between plasma and red blood cell
 - Partial solute rejection at membrane surface
- Membrane factors
 - Interaction of convective and diffusive transport
 - Concentration polarization of blood cells, protein and partially reflected smaller molecules
 - Interaction of hydraulic pressure and osmotic effects to produce forward filtration and backfiltration

Governing principles for modeling

- Dialysate factors
 - Applied fluid flows and pressures
 - Concentration of solutes in dialysate
- Dialysate has cooler temperatures than blood
 - Heat loss to environment
 - Temperature dependence of blood density and viscosity
- Ionic charge on proteins and some solutes
 - Protein rejection at membrane
 - Impairment of solute transport across membrane

Previous mathematical models

- Single compartment models
- Multiple compartment models
- One-dimensional computational models
- Two/three-dimensional computational model
 - Finite element analysis

Single compartment analytical model

Pallone TL: *Kidney Int* 1988;33:685-98 Pallone TL: *Kidney Int* 1989;35:125-133

- Single blood and dialysate mass balance compartments
- Used a length-averaged mass transfer coefficient for solutes
 - Dependent upon operating conditions
- Overestimated filtration rate vs. experimental data
 - Could not account for concentration polarization or membrane rejection
- Unable to account for processes such as backfiltration

Multiple compartment analytical model

Fiore GB: Contrib Nephrol 2005;149:27-34

- Accounted for local fluid balance changes (axially only)
 - Pressure drops
 - Viscosity
 - Osmotic effects
- Addressed fluid fluxes only
 - Did not include convective or diffusive solute transport
- Described backfiltration not possible in simpler models
- Does not account for radial effects
 - Concentration polarization

One-dimensional computational models

Legallis C: *J Membr Sci* 2000;168:3-15 Raff M: *J Membr Sci* 2003;216:1-11

- Ordinary differential equations solved numerically along the axis
 - Included local viscosity, osmotic pressure, etc.
- Include solute transport with convection-diffusion interaction
 - Formulas of Zydney (extension of Villarroel)
 - Flat membrane
- Included approximations of boundary layer effect on mass transfer coefficient
 - Able to account for concentration polarization

Limitations of previous models

- Simplifying assumptions
 - Overall mass transfer coefficients
 - Approximations to boundary conditions
- Geometrically naïve
 - Single compartments naïve to axis and radius
 - Multiple compartments naïve to radius, and approximate axial conditions
 - One dimensional computational models approximate radial conditions
 - Membranes modeled as boundaries only
- Biased estimates of convection-diffusion interaction
 - Ignored in previous models
 - Based on older flat membrane analysis in advanced models
 - Model geometry based on hollow fiber membranes

Hollow Fiber Geometry Modeling

COMSOL Application Modes

LSU

Health

Sciences Center

Center

Non-Newtonian Blood Flow

Carreau equation:

$$\mu = \mu_{\infty} + (\mu_0 - \mu_{\inf}) [1 + (\lambda \dot{\gamma})^2]^{\frac{(n-1)}{2}}$$

Fahraeus-Lindqvist Effect

$$H(r) = -H \frac{n(n+1)(n-1)}{2}$$

$$\begin{bmatrix} \frac{r^{n}}{n} - \frac{2r^{n-1}}{n-1} + \frac{r^{n-2}}{n-2} - \frac{2}{n(n-1)(n-2)} \end{bmatrix}$$
where
$$n = 17.3 + \frac{11.1}{H - .206}$$

Colloid Osmotic Pressure

LSU

Health Sciences Center

Protein concentration in blood phase

Ultrafiltration rate validation

Hemofiltration vs dialysis

Solute clearance during dialysis

Historical assumption:

 V_{dia} in = Vdiaout \rightarrow zero net ultrafiltration \rightarrow diffusive clearance only

Recent recognition:

Internal filtration / backfiltration

Sensitivity of fluid flux to the protein diffusion coefficient

Health

Sciences Center

Expanding the application modes

Modeling the circadian rhythm – existing ordinary differential equation models

$$\frac{d[PER_{c}]}{dt} = -k_{PTc} \cdot [PER_{c}] \cdot [TIM_{c}]$$
(1)

$$\frac{TIM_c}{dt} = k_{MA} \cdot [PER \cdot TIM_c] - k_{PTc} \cdot [PER_c] \cdot [TIM_c] - N_T \cdot [TIM_c] + C_T \cdot [TIM_n]$$
(2)

$$\frac{d[PER \cdot TIM_c]}{dt} = k_{PTc} \cdot [PER_c] \cdot [TIM_c] - k_{MA} \cdot [PER \cdot TIM_c] \quad (3)$$

$$\frac{d[PER \cdot P_c]}{dt} = k_{MA} \cdot [PER \cdot TIM_c] - N_P \cdot [PER \cdot P_c] + C_P \cdot [PER \cdot P_n]$$
(4)

$$\frac{d[PER \cdot P_n]}{dt} = N_P \cdot [PER \cdot P_c] - C_P \cdot [PER \cdot P_n] - k_{PTn} \\ \cdot [PER \cdot P_n] \cdot [TIM_n] + k_{dPTn} \cdot [PER \cdot TIM_n]$$
(5)

$$\frac{d[TIM_n]}{dt} = N_T \cdot [TIM_c] - C_T \cdot [TIM_n] - k_{PTn} \cdot [PER \cdot P_n] \cdot [TIM_n] + k_{dPTn} \cdot [PER \cdot TIM_n]$$
(6)

$$\frac{d[PER \cdot TIM_n]}{dt} = k_{PTn} \cdot [PER \cdot P_n] \cdot [TIM_n] - k_{dPTn} \cdot [PER \cdot TIM_n] \quad (7)$$

- Cell shape
- Cytoplasmic streaming
- Intracellular organelles
- DNA binding kinetics
 - Momentum transport
 - Diffusive transport
 - Convective transport
 - Chemical reactions

- Multiphysics modeling has not been widely exploited in medicine and biology
- Most modeling to date has been in the application of technology to medical treatments, such as artificial organs and tissue heating
- Little multiphysics finite element analysis has been applied to study of underlying physiological and cellular processes