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Background and motivation

Bone-like materials
I are composed of simple constituents: collagen, mineral, water;
I are hierarchically structured across many length scales.
 anisotropic materials displaying a great variety in mechanical function.

What is the importance of the hierarchical structure for mechanical function?
I Direct simulation across all length scales is not feasible.
I Homogenisation to “compress” information at fine scale.
I Use homogenised information at a coarser scale.
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Experimental stiffness tensor

I Scanning Acoustic Microscopy (SAM)
 acoustic impedance map Z (x) of bone cross section.

I Frequency of the acoustic beam determines scan resolution.
I Z (x) strongly correlated with elastic stiffness coefficient in probing direction.

 (with some additional assumptions): the elastic stiffness tensor C(x).

⇐ coarse resolution
fine resolution⇒

⇐ experimental homogenisation⇐

Details: [Raum, in: Bone Quantitative Ultrasound, Laugier & Haïat (Eds.), Springer, 2011]
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Overview homogenisation

Numerical homogenization approach

2D SAM data → c33(x)

Extend c33(x) to C(x)

Translate to 3D RVE

Project on regular FE mesh

Reduction of
FE simulation of 6 

independent loadings

For each loading

∫

Reduction of 
complexity

σ @ 100 µεFor each loading,
average stress & strain over RVE∫

σy @ 100 µε

Computation of Ceff for 

equivalent homogeneous RVEequivalent homogeneous RVE  
from linear system
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PDE problem: equations of linear elasticity

Given:
I cuboid domain Ω ⊂ R3, the representative volume element (RVE) and
I stiffness tensor C(x) for x ∈ Ω.

Determine displacement field u = (u1, u2, u3) : Ω→ R3 from

− ∂j (Cijkl (x)εkl (x)︸ ︷︷ ︸
stress σ(x)

) = 0 , x ∈ Ω , where ε(x)︸︷︷︸
strain

:=
1
2

(
∇u(x) + (∇u(x))T) (LE)

subject to given boundary conditions (displacement, traction, periodic).

Comsol: Structural Mechanics Module, Solid stress-strain (static analysis).

Remark: for our application we only need zero volume forces in (LE).
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Numerical homogenisation: RVE approach

[Zohdi & Wriggers, An Introduction to Computational Micromechanics, Springer, 2008]

1. Solve (LE) for six independent sets of boundary conditions (BCs)
 u(i)(x), ε(i)(x),σ(i)(x), i = 1, 2, ... , 6.

2. The symmetric tensors ε(i)(x) and σ(i)(x) are rearranged as vectors
ε(i)(x),σ(i)(x) ∈ R6.

3. Compute volume averages
〈
ε(i)
〉

and
〈
σ(i)
〉

over Ω and arrange the vectors
columnwise as matrices 〈ε〉 and 〈σ〉.

4. The apparent stiffness tensor (in matrix form) is then defined by

〈σ〉 = Capp 〈ε〉 .

Capp ≈ Ceff, the effective stiffness of the material at the scale of the RVE Ω.
 Capp captures smaller-scale information.
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Sets of boundary conditions (1)

1. Pure linear displacements boundary conditions

u(x) = M (i)x for all x ∈ ∂Ω .

2. Pure tractions boundary conditions (n(x) = unit outer normal at x ∈ ∂Ω)

σ(x)n(x) = M (i)n(x) for all x ∈ ∂Ω .

Remark: requires additional constraint for a unique solution u.

Choice of matrices M (i):

β 0 0
0 0 0
0 0 0

 ,

0 0 0
0 β 0
0 0 0

 ,

0 0 0
0 0 0
0 0 β

 ,

0 β 0
β 0 0
0 0 0

 ,

0 0 0
0 0 β
0 β 0

 ,

0 0 β
0 0 0
β 0 0

 .

Comsol, Paris | 17-19 November 2010 | FB Mathematik, TU Darmstadt, Germany | A. Gerisch | 7



Sets of boundary conditions (2)

3. Periodic boundary conditions

u(x)− P (i)(x) is periodic for x ∈ ∂Ω and
〈
u − P (i)〉 = 0 .

Here:

P(i)(x) =

x
0
0

 ,

0
y
0

 ,

0
0
z

 ,

y
0
0

 ,

0
z
0

 ,

z
0
0

 .

Details: [Cioranescu & Donato, An Introduction to Homogenization, OUP, 1999]
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Implementation issues

Comsol, using its Matlab programming interface, provides the tools required to
implement the computation of the apparent stiffness tensor Capp.

I displacement and traction BCs: implemented in “solid” application mode;
I periodicity constraints: implemented using extrusion coupling variables and

boundary constraints;
I volume average constraints: implemented using integration coupling variables

and point constraints;
I stress/strain averages: implemented using integration coupling variables.

Remarks:
I Higher accuracy for periodic BCs on periodic (unstructured) boundary mesh.
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Numerical results: the lamellar unit (1)

The lamellar unit
I is the structural building block of an osteon;
I is a layered structure with fixed orientation θi

of mineralised collagen fibrils in each layer i ;
I the orientation changes from layer to layer.

Model input data:
I SAM at 1.2 GHz is used to derive a transverse

isotropic stiffness tensor C(θ) for θ = 0;
I b the stiffness tensor C(θi ) in layer i is obtained by

rotating C(0).
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Numerical results: the lamellar unit (2)

I The LU model: asymmetric plywood, twist
angle 30◦. Homogenisation recovers
(experimental) anisotropy at osteon scale.

I Other LU models: symmetric or orthogonal
plywood do not result in this
characteristic anisotropic feature.

 asymmetric plywood: strong candidate for real
structure at the LU-level of organisation.
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Self-consistent RVE scheme

The effective stiffness of an RVE is independent of applied BCs.

Goal: Reduce influence of applied BCs in computation of apparent stiffness Capp.

Method: embed RVE Ω in domain Ω̃ and use material with the (yet unknown)
effective/apparent stiffness in Ω̃ \ Ω.

 iterative scheme computing Capp,0, Capp,1, . . .

1. Set i = 0 and initial guess for apparent stiffness Capp,0.
2. Solve (LE) in Ω̃ with Capp,i for given BCs.
3. Compute stress/strain averages in embedded RVE Ω and determine Capp,i+1.
4. IF distance(Capp,i, Capp,i+1) ≤ tolerance (convergence test)

THEN
Capp := Capp,i+1, RETURN.

ELSE
i := i + 1 and GOTO step 2.
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Implementation issues

I The standard RVE approach can be fully utilised with minor changes.

I Reuse solution u of i th iteration as initial solution guess in iteration i + 1.

I In our application, a few (4–6) iterations are usually sufficient for convergence.

I If the RVE has void pores then the embedding of the RVE makes the
computations more robust.
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Conclusions

I Developed a numerical homogenisation scheme within Comsol Multiphysics.

I In principle, any material or structure can be inside the RVE.

I Periodic grids improve accuracy with periodic BCs.

Open problems and outlook
I Periodic BCs:

I the linear iterative solver has convergence problems;
I occasionally, the grid does not turn out to be periodic.

I Further improvements in required CPU time by spatial adaptivity.

I But: Periodic grids prevent (simple) use of spatial adaptivity.

I Tests with other homogenisation problems (also non-bone).
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