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Introduction Results

Bipolar electrodes (BPESs) have proven to be useful tools for a wide range of applications || Our simulation of a configuration with passive valves demonstrates near-
[1-3]. Here, we propose to leverage pressure forces associated with induced-charge || unidirectional throughput from the peristalsis-like diaphragm motion driven
electroosmotic flow (ICEOF) to actuate a diaphragm-based micropumping mechanism. by periodic pressure disturbances in the channel below. Additionally, we use
‘4 !||! | our numerical model to investigate the effects of various design parameters
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Fig. 1. Example fluidic device containing floating BPEs (left), and associated electrokinetics (right).
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Step 2: Passive valves close,
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can displace fluid in a top channel. +— e 20 unidirectional pumping using a fluidic array with a single
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Actuation Channel Outlet: _ _
h=0 | » Pressure generated by ICEOF actuates diaphragm for pumping
Inlet: BPE_SOUrfacei Fluid/Diaphragm ¢ =c . > Fully coupled model developed to simulate highly nonlinear physics
p=0 Ufli 0 Interface: w =0 » Passive valves enable continuous, reciprocating peristaltic-like flow
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romising mechanism provides many potential benefits:
Channel Walls: o,=I;-n n-V(ey)=0 v Low power requirements (AC, small currents)

s =0 v' BPEs actuated “wirelessly” via electric field

n-N; =0 v’ Precise fluid manipulation at very low flow rates

N-V(ey) =0 v" Pumped sample completely isolated from electrical contact & contamination

Fig. 4. 2D COMSOL Multiphysics® model, with governing equations and boundary conditions
used in our numerical simulations. The full model resolves surface polarization, charge screening References
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