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Fig. 2: Recirculating induced-charge

flow at the BPE generates pressure

forces that simultaneously push up

and down on the top wall of the

channel; if this wall is replaced with a

flexible diaphragm, periodic actuation

can displace fluid in a top channel.
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Introduction

Bipolar electrodes (BPEs) have proven to be useful tools for a wide range of applications

[1-3]. Here, we propose to leverage pressure forces associated with induced-charge

electroosmotic flow (ICEOF) to actuate a diaphragm-based micropumping mechanism.

Fig. 3: Our initial concept involved a bipolar electrochemical actuator (left), but we are investigating

whether electrokinetic ICEOF alone might be sufficient for actuation within a new scheme (right).
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➢ Pressure generated by ICEOF actuates diaphragm for pumping

➢ Fully coupled model developed to simulate highly nonlinear physics

➢ Passive valves enable continuous, reciprocating peristaltic-like flow

➢ Ultra-low simulated flow rates range from pL/s to μL/s 

➢ Promising mechanism provides many potential benefits:

✓ Low power requirements (AC, small currents)

✓ BPEs actuated “wirelessly” via electric field

✓ Precise fluid manipulation at very low flow rates

✓ Pumped sample completely isolated from electrical contact & contamination
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Our simulation of a configuration with passive valves demonstrates near-

unidirectional throughput from the peristalsis-like diaphragm motion driven

by periodic pressure disturbances in the channel below. Additionally, we use

our numerical model to investigate the effects of various design parameters

on the pumping performance, including system length, channel heights, and

diaphragm material properties.

Results

Fig. 1: Example fluidic device containing floating BPEs (left), and associated electrokinetics (right). 

Fig. 4: 2D COMSOL Multiphysics® model, with governing equations and boundary conditions

used in our numerical simulations. The full model resolves surface polarization, charge screening

dynamics, and more – but can take several days to solve transient pumping dynamics studies.

Fully Coupled Numerical Model

▪ Full model includes surface polarization and nanoscale charge screening dynamics

Reciprocating Micropumping Mechanism

Fig. 5: Passive valves allow for continuous, near-

unidirectional pumping using a fluidic array with a single

AC voltage between two driving electrodes: actuation

process (above) and net volume pumped (left).

Design Considerations

Bubbles from electrolysis

INITIAL CONCEPT: 
Electrochemical Pump

NEW IDEA: Electrokinetic Actuation

▪ Model assumptions:

▪ Dilute electrolyte solution

▪ Fixed channel wall  

surface charge

▪ No specific adsorption of 

charged species on BPE

▪ No Faradaic reactions 

(ideally polarizable)

▪ Neglect homogeneous 

buffer reactions

▪ No hydrostatic pressure 

difference across channels

Potential Across BPE:

▪ Long BPE + large E field → Faradaic reactions
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Confinement Effect:

▪ More shallow channels → higher pressure load

Time Scales/Driving Frequencies

▪ EDL charging vs. redox reactions vs. diaphragm motion

Diaphragm Stiffness:

▪ PDMS most flexible option

▪ 8 um thinnest feasible diaphragm

(Assumes

relatively wide

diaphragm)
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