

Presented at the 2011 COMSOL Conference in Boston

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Lingyao Yu¹, Yi He², Arthur Chiou², and Yunlong Sheng¹

1 Center of Optics, Photonics and Lasers, Dept. of Physics, University Laval, Quebec, Canada 2 Institute of Biophotonics Engineering, National Yang-Ming University, Taipei, Taiwan

Content

1. Manipulating RBC with optical tweezers

2. Steps of calculation

3. Models of COMSOL Multiphysics

4. Computation and Experiment results

5. Conclusions and Prospects

Manipulating the human red blood cell (RBC) with optical tweezers

RBC (erythrocyte)

UNIVERSITÉ

Transportability

Deformability

Mechanical force of cell

Red blood cells in the spleen

Scanning electron microphotograph of normal murine red blood cell passing from a splenic cord (below) through the sinusoidal barrier and into the splenic sinusoid (above). Note the deformation necessary to squeeze through the slit in the sinusoidal wall and how a surface area depleted spherocyte would be incapable of transversing the barrier. *Courtesy of Mohandas Narla, ScD*.

LAVAL Cited papers about manipulating the RBC with optical tweezers

Year

Statistics from the web of science database:

 来 来 来 来 来 来 来 来 来 来 来 UNIVERSITÉ

http://apps.webofknowledge.com/CitationReport.do?product=WOS&search_mode=CitationReport&SD=4Ea9dB6o @LaEK7LG6nJ&page=1&cr_pqid=7&viewType=summary

photonique et laser

Manipulating RBC with optical tweezers

Dual-beam optical tweezers

Jumping beam

†: G. B. Liao et al, Opt. Express 16(3), 1996–2004 (2008);
‡: Y. Sheng at el, COMSOL Conference Boston (2010).

COPL Centre d'optique, photonique et laser

Advantages of the dual-beam optical tweezers

- Probing the characteristics of the cellular membrane and cytoskeleton by Manipulating living biological cells
- No physical contact to the specimen

Photonics' shear force is in the same order of magnitude (pN) as the mechanical force for deforming the cell

1.

2.

3.

4.

Steps of Simulation

The background electromagnetic fields of dual-beam optical tweezers;

Compute stress distribution with Maxwell Stress tensor in RF Module[™]

Compute Deformation of RBC with solid mechanics[™] module

Geometry of a biconcave RBC

*: E. Evans, and Y. Fung, Microvascular research, 4 (1972) 335-347

RBC model

RBC solid geometry-

Introduction of background field

Introduction of background field

Maxwell stress tensor

$$\vec{T} = \varepsilon \left[\vec{E}\vec{E} + \frac{1}{\varepsilon \mu_0} \vec{B}\vec{B} - \frac{1}{2} \left(E^2 + \frac{1}{\varepsilon \mu_0} B^2 \right) \vec{I} \right]$$

$$\vec{\sigma} = \frac{\varepsilon_0}{2} \left(n_1^2 - n_2^2 \right) \left(\left(\frac{n_1^2}{n_2^2} \right) E_n^2 + E_t^2 \right) \vec{n}$$

tangent
$$\vec{E}_t = \vec{E} \times \vec{n} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ E_x & E_y & E_z \\ n_x & n_y & n_z \end{vmatrix}$$

normal
$$E_n = \vec{E} \cdot \vec{n} = E_x n_x + E_y n_y + E_z n_z$$

Interface of our model

- a= Variables 3
- 🧾 Boundary System 1 (sys1)
- Boundary System 2 (sys2)
- 🛛 🎝 🖓 View 1

UNIVERSITÉ LAVAL

- Geometry 1
 - 💽 Import 1 (imp1)
 - Scale 2 (sca2)
 - Form Union (fin)
- a 🌐 Materials
 - 👂 🏶 Material 1
 - Material 2
 - 👂 🏶 Material 3
 - 👂 🏶 Material 4
- a (Electromagnetic Waves (emw)
 - 🖣 Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - > 1 Initial Values 1
 - Perfectly Matched Layers 1
- Ilectromagnetic Waves 2 (emw2)
 - > 1 Wave Equation, Electric 1
 - Perfect Electric Conductor 1
 - Initial Values 1
 - Perfectly Matched Layers 1
- Solid Mechanics (solid)
 - > 1 Linear Elastic Material Model
 - 🔈 🍋 Free 1
 - Initial Values 1
 - > 📄 Boundary Load 1
 - Prescribed Displacement 1
 - Prescribed Displacement 2
 - Prescribed Displacement 3

Two electromagnetic waves modules as dual-beam optical tweezers, respectively

Stress calculated from the RF modules will be loaded in Solid mechanics module

Constraints of prescribed displacement have also been set

Initial Stress on cell surface

The normalized stress distribution in different beam separations S=3.1 (a), 3.8 (b), 4.5 (c), 5.2 (d), 5.9 (e), 6.6 (f), 7.0 (g), and 7.3 (h) μ m with COMSOL multiphysics.

Redistribution of stress on the deformed cells

OPI

Centre d'optique, photonique et laser

Final deformations

Fitting to Experimental Results

Jumping Distance : 3.1 µm 3.8 µm 4.5 µm 5.2 µm 5.9 µm 6.6 µm 7.3 µm 🐖

Conclusion

 RF module is used to compute the scattered EM field instead of geometrical optics;

 ◆ RF module and Structural mechanics module are combined with Comsol[™] strongly coupled solver;

 Natural biconcave shape of RBC is calculated instead of the swollen spherical RBC;

 Computed deformations are fit to experimental data to determine the elasticity of the RBC .

Prospects

- The deformation of the arbitrary shape of the cell can be simulated with the same method as well as the organelle and biomolecules (like the cell membranes, proteins, and DNAs).
- A variety of mechanical characteristics of human cells can be explored

Thank you!

