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Introduction:

The finite element method (FEM) is a powerful numerical method for
solving partial differential equations (PDEs), such as for instance the
time-dependent linear parabolic heat equation with homogeneous
Dirichlet boundary conditions

ut −∇ · ∇u = f for x ∈ Ω and 0 < t ≤ T , (1)
u = 0 for x ∈ ∂Ω and 0 < t ≤ T , (2)

u = 0 for x ∈ Ω at t = 0, (3)

where f is a given source term on the domain Ω ⊂ Rd in d = 2 and 3
dimensions. We consider the simple domain Ω = (−1, 1)d and the
initial condition u = 0 for compatibility with the boundary conditions
in order to focus the numerical studies on the properties of the source
term f .
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The FEM theory provides the basis for quantification on the accuracy
and reliability of a numerical solution by the a priori error estimate

‖u(·, t)− uh(·, t)‖
L2(Ω)

≤ C hλ, as h → 0, for all times t. (4)

u(x, t) denotes the PDE solution of the problem and uh(x, t) the
FEM solution
h is the mesh size of the FEM mesh
λ is the convergence order of the FEM
C is a constant independent of λ.
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A Priori Error Estimate

‖u(·, t)− uh(·, t)‖
L2(Ω)

≤ C hλ as h → 0, for all times t

For problems with a smooth right-hand side f ∈ L2(Ω) in
ut −∇ · ∇u = f , classical theory guarantees λ = 2 for all spatial
domains, in particular in d = 2 and 3 dimensions.
[e.g., Thomeé 2006, Quarteroni and Valli 1994].
If f is not smooth, e.g., if it is a point source modeled by a Dirac
delta distribution f = δ(x), classical theory does not apply.

A new extension to the rigorous theory has been worked out for this
type of problem and COMSOL Multiphysics was used for the
numerical studies. The result shows that the convergence order λ
depends on the spatial dimension d, in this case, and is given by
λ = 2− d/2.
[Seidman, Gobbert, Trott, and Kruž́ık, Numer. Math., submitted].
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One practical test for reliability of a FEM solution is to refine the FEM
mesh, compute the solution again on the finer mesh, and compare the
solutions on the two meshes qualitatively.

λ(est) = log2

(
‖u2h(·, t)− u(·, t)‖

L2(Ω)

‖uh(·, t)− u(·, t)‖
L2(Ω)

)
, for all times t. (5)

Here, uh denotes the finite element solution on a mesh with mesh
spacing h and u2h on a mesh with twice the mesh spacing.
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Use of COMSOL Multiphysics:
Linear Lagrange elements as provided in COMSOL Multiphysics
The domain Ω = (−1, 1)d has piecewise smooth boundaries can be
discretized without error

Triangular meshes in d = 2
Tetrahedral meshes in d = 3

Convergence studies performed rely on a sequence of meshes with
mesh spacings h that are halved in each step.

Numerical solution is computed on the highest refined mesh which
we treat as a reference mesh. The solutions for the lower refined
meshes are imported for comparison on this reference mesh through
the use of COMSOL’s built-in interpolation function. Using the
post-processing tools, we can compute the error.
For each of the meshes considered, we track the number of mesh
elements, the degrees of freedom (DOF) of the linear nodal elements
for that mesh, and the mesh spacing h for each refinement level r
from the initial mesh for r = 0 to the finest mesh explored
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In d = 2 dimensions, the initial mesh consists of 4 triangles with
5 vertices given by the 4 corners of Ω plus the center point. In d = 3
dimensions, the initial mesh has 28 tetrahedra with 15 vertices.

Figure 1: Initial mesh for d = 2, 3
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Table 1: Finite element data for all meshes in two and three dimensions for all
refinement levels r.

(a) Two spatial dimensions on a triangular mesh
r Ne N = DOF maxe he

0 4 5 2.000000
1 16 13 1.000000
2 64 41 0.500000
3 256 145 0.250000
4 1024 545 0.125000
5 4096 2113 0.062500
6 16384 8321 0.031250
(b) Three spatial dimensions on a tetragonal mesh
r Ne N = DOF maxe he

0 28 15 2.000000
1 224 69 1.000000
2 1792 409 0.500000
3 14336 2801 0.250000
4 114688 20705 0.125000
5 917504 159169 0.062500
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Smooth Problem

We first consider a smooth test problem, for which the solution u(x, t)
is both available in analytical form and smooth. Specifically, we choose
the source term f(x, t) such that the problem admits the analytic PDE
solution

u(x, t) =
(
1− e−t2/4

)
cos2

(πx1

2

)
cos2

(πx2

2

)
.

Solution exhibits its most significant transient in time from about
1 ≤ t ≤ 4. Therefore, we analyze the error bound at the times
t = 2, 3, and 4.
While the smooth problem does have a known PDE solution, the
non-smooth problem does not. So, we test the estimation
procedure on the smooth problem as well using a reference
solution: rref = 6 for dimensions d = 2 and rref = 5 for d = 3.
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Figure 2: Numerical solutions for the smooth test problem t = 1, 2, 3, 4
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Table 2: Convergence studies in two dimensions (d = 2) for the smooth test
problem on triangular meshes.

(a) Smooth problem: true error
r t = 2 t = 3 t = 4
0 9.385e-02 1.333e-01 1.465e-01
1 5.196e-02 (0.85) 7.398e-02 (0.85) 8.136e-02 (0.85)
2 2.848e-02 (0.87) 4.048e-02 (0.87) 4.450e-02 (0.87)
3 7.249e-03 (1.97) 1.032e-02 (1.97) 1.134e-02 (1.97)
4 1.833e-03 (1.98) 2.609e-03 (1.98) 2.870e-03 (1.98)
5 4.628e-04 (1.99) 6.589e-04 (1.99) 7.246e-04 (1.99)

(b) Smooth problem: reference error
r t = 2 t = 3 t = 4
0 9.385e-02 1.333e-01 1.465e-01
1 5.194e-02 (0.85) 7.395e-02 (0.85) 8.133e-02 (0.85)
2 2.846e-02 (0.87) 4.046e-02 (0.87) 4.446e-02 (0.87)
3 7.228e-03 (1.98) 1.029e-02 (1.98) 1.131e-02 (1.97)
4 1.812e-03 (2.00) 2.579e-03 (2.00) 2.836e-03 (2.00)
5 4.419e-04 (2.04) 6.290e-04 (2.04) 6.916e-04 (2.04)
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Table 3: Convergence studies in three dimensions (d = 3) for the smooth test
problem on tetragonal meshes.

(a) Smooth problem: true error
r t = 2 t = 3 t = 4
0 6.707e-02 9.531e-02 1.047e-01
1 4.664e-02 (0.52) 6.621e-02 (0.53) 7.273e-02 (0.53)
2 1.483e-02 (1.65) 2.107e-02 (1.65) 2.315e-02 (1.65)
3 3.987e-03 (1.90) 5.669e-03 (1.89) 6.226e-03 (1.89)
4 1.063e-03 (1.91) 1.511e-03 (1.91) 1.656e-03 (1.91)

(b) Smooth problem: reference error
r t = 2 t = 3 t = 4
0 6.691e-02 9.508e-02 1.045e-01
1 4.642e-02 (0.53) 6.590e-02 (0.53) 7.239e-02 (0.53)
2 1.461e-02 (1.67) 2.075e-02 (1.67) 2.281e-02 (1.67)
3 3.759e-03 (1.96) 5.343e-03 (1.96) 5.873e-03 (1.96)
4 8.380e-04 (2.17) 1.190e-03 (2.17) 1.308e-03 (2.17)
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(a) d = 2 (b) d = 3

Figure 3: Smooth test problem: log(error-norm) vs. log(1/h).

Computational tests confirm the convergence order λ = 2
independent of dimension d = 2 or 3.
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Non-Smooth Problem

In the case of the non-smooth test problem, the source term is
provided by the Dirac delta distribution f(x, t) = δ(x) and has been
positioned at the center of the domain.

It is clear that the solution, starting from the initial condition
u = 0, will grow dramatically due to the injection of mass at the
center for all times t > 0.
The implementation of the delta distribution in COMSOL makes
use of the instructions in the User’s Guide on how to add a point
source. However, for a time-dependent problem, it is necessary to
multiply the basis function by the Boolean operator t > 0 to ensure
that at t = 0 the initial value of u is truly zero over the domain Ω.
We do not have a PDE solution for comparison so we make use of
the numerical solution on the finest mesh as a reference solution
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Figure 4: Numerical solutions for the Non-Smooth test problem t = 1, 2, 3, 4
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Table 4: Convergence studies for the Non-Smooth test problem.

(a) Non-Smooth problem d = 2: reference error
r t = 2 t = 3 t = 4
0 3.419e-02 3.433e-02 3.433e-02
1 2.271e-02 (0.59) 2.286e-02 (0.59) 2.286e-02 (0.59)
2 1.138e-02 (1.00) 1.158e-02 (0.98) 1.158e-02 (0.98)
3 5.615e-03 (1.02) 5.839e-03 (0.99) 5.839e-03 (0.99)
4 2.613e-03 (1.10) 2.815e-03 (1.05) 2.815e-03 (1.05)
5 1.193e-03 (1.13) 1.307e-03 (1.11) 1.307e-03 (1.11)

(b) Non-Smooth problem d = 3: reference error
r t = 2 t = 3 t = 4
0 8.363e-02 8.363e-02 8.363e-02
1 4.761e-02 (0.81) 4.761e-02 (0.81) 4.761e-02 (0.81)
2 3.477e-02 (0.45) 3.477e-02 (0.45) 3.477e-02 (0.45)
3 3.049e-02 (0.19) 3.049e-02 (0.19) 3.049e-02 (0.19)
4 2.057e-02 (0.57) 2.057e-02 (0.57) 2.057e-02 (0.57)
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(a) d = 2 (b) d = 3

Figure 5: Non-smooth test problem: log(error-norm) vs. log(1/h).

Computational tests confirm the convergence order λ = 2− d/2
dependent on dimension d: λ = 1 for d = 2 and λ = 0.5 for d = 3,
as proved in [Seidman, Gobbert, Trott, and Kruž́ık, Numer.
Math., submitted].
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Conclusions:
COMSOL Multiphysics is an excellent tool for numerical studies of
this type, because it can readily implement a point source, has
reliable time-stepping, accurate linear solvers, and the process of
refining the mesh repeatedly is easily automated through the use
of LiveLink with MATLAB.
Using COMSOL, we were able to provide numerical studies to
support new theoretical results which showed that for non-smooth
problems of the type discussed, the rate of convergence λ = 2− d/2
[Seidman, Gobbert, Trott, and Kruž́ık, Numer. Math., submitted]
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