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Abstract: This work analyzes the spin-diffusion 

dominated mechanism for spin-up bulk flows in 

ferrofluid filled cylinders, with no free surface, 

subjected to a uniform rotating magnetic field. 

COMSOL results are compared to experimental 

and analytical results computed using 

Mathematica, giving good agreement between 

the three. Both one (ferrofluid cylinder) and two 

domain (ferrofluid cylinder in air) problems 

solved in this work are compared and yield 

identical resulting in further insight into the 

governing physics. Subtleties occur when using a 

single domain region to model the ferrofluid 

cylinder without correct adjustment for 

demagnetizing effects. COMSOL was also used 

to investigate spin viscosity effects on velocity 

profiles. Overall, this work documents the 

method of simulating ferrofluid spin-up flows, in 

uniform rotating magnetic fields, using 

COMSOL Multiphysics. The COMSOL results 

obtained give good agreement to analytical 

solutions and experimental results.  
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1. Introduction 
 

The classic spin-up experiment involves placing 

a ferrofluid filled cylinder in a uniform rotating 

magnetic field and observing the velocity 

distribution. The opacity of the ferrofluid led 

many researchers to observe the velocity 

distribution using streak path techniques with 

tracer particles only on the surface of the fluid 

[1-3]. However this led to observations of flow 

that were counter-rotating to the rotational 

direction of the magnetic field [4]. This counter-

rotating phenomena was explained to be a result 

of asymmetric tangential stresses on the 

boundary of the magnetic fluid [5]. It was 

believed that the flow in the bulk of the fluid 

would be an entrainment of this surface flow. If 

asymmetric tangential stresses on the boundary 

of the magnetic fluid entrained the fluid layers 

below, then by placing a cover and removing the 

free surface at the top of the cylinder the fluid 

would conceivably not have any motion [3, 6-9]. 

  Pulsed ultrasound velocimetry allows for 

bulk velocity flow measurements of opaque 

fluids and experiments were done with and 

without the cover on top of the surface. Co-

rotating motion was observed in the bulk of the 

fluid in both cases while counter-rotating 

motion, with a concave shaped meniscus, was 

observed near the surface [10-13]. 

There are two alternate theories for bulk 

ferrofluid spin-up flow in rotating fields. One 

theory considers inhomogeneous heating of the 

fluid due to the dissipated energy of the rotating 

field to create a spatial variation in susceptibility 

driving the rotational flow [3, 14-16]. Another 

theory assumes that the imposed rotating 

magnetic field is non-uniform itself due to the 

demagnetizing effects associated with a finite 

height cylinder [3, 15]. Recent work has 

demonstrated that this non-uniform magnetic 

field drives ferrofluid flow [17-21]. 

This work analyzes the spin diffusion theory 

explanation for rotational motion by assuming 

the cylinder's height is infinite, resulting in 

negligible field non-uniformity in most of the 

fluid, and assumes that the strength of the 

magnetic field is weak enough to assume 

negligible heating effects of the fluid. 

 

2. Governing Equations 

 
2.1 Ferrohydrodynamics  

 
The governing ferrohydrodynamics equations 

include conservation of linear and angular 

momentum [22] given in Eqs (1) and (2).  
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where the variables are dynamic pressure p' 

(including gravity) [N/m2], ferrofluid mass 

density ρ [kg/m3], fluid moment of inertia 

density I [kg/m], fluid magnetization M [A/m], 

magnetic field H [A/m], spin velocity ω  [1/s], 

ferrofluid dynamic viscosity η [N-s/m2], vortex 

viscosity ζ=1.5ηφvol 
[N-s/m2] for small volume 

fraction
 
φvol of magnetic nanoparticles [22, 23], 

and η' [N-s] is the shear coefficient of spin 

viscosity.  

 

2.2 Magnetic Field Equations 

 

The ferrofluid magnetization relaxation equation 

derived by Shliomis [23] is  
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where equilibrium magnetization Meq [A/m] is 

given by the Langevin equation 
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with Ms [A/m] the saturation magnetization 

given as, Ms=Mdφvol, Md = 446 [kA/m] is the 

domain magnetization for magnetite [22], Vp 

[m3] is the magnetic core volume per particle, 

µ0=4π× 10-7 [H/m] is the magnetic permeability 

of free space, k=1.38x10-23 [J/K] is Boltzmann’s 

constant, T [K] the temperature in Kelvin, and 

effective relaxation time constant τeff [s] includes 

Brownian and Néel effects. 

 Maxwell's equations for a non-conducting 

fluid are  
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The magnetic field can be given by 
 , � 89 (6) 
 

where ψ is the magnetic scalar potential. Eqs (5) 

and (6) result in a Poisson's equation given as 
 	�9 � 	 · � (7) 
 

 

3. Assumptions 
 

The applied field is assumed to not be strong 

enough to magnetically saturate the fluid. The 

equilibrium magnetization Meq [A/m] of the fluid 

is assumed to be in the linear regime of the 

Langevin equation. This linear relationship as a 

function of the magnetic field inside the 

ferrofluid has a slope represented by χ, the 

magnetic susceptibility of the material, is given 

by 
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 An infinitely long ferrofluid filled cylinder 

was modeled since it has no demagnetizing 

effect in the axial direction and equal 

demagnetizing factors of ½ in the transverse 

directions resulting in a uniform field inside the 

ferrofluid filled cylinder. In the actual 

experiments, the finite height cylinder of 

ferrofluid does have an internal non-uniform 

field, due to demagnetizing effects, in an external 

uniform field.  

 The flow is also assumed to be 

incompressible and  dominated by viscous 

effects (low Reynolds number) allowing for the 

inertial terms to be dropped. The left hand side 

of the linear and angular momentum equations in 

Eqs (1) and (2) can be set to 0 reducing the 

equations to  
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 If the magnetic field is applied in the 

transverse x-y plane, the spin-velocity ω is 

assumed to only be in the z-direction ωz. This is 

because in an infinitely long cylinder, the driving 

force is created only by the transverse magnetic 

field which creates a torque only in the z-

direction. The spatially varying demagnetizing 

field of a finite height cylinder would create an 

internal magnetic field that had components in 

the transverse (x-y) plane as well as the axial 

plane (z). In that case, there would be a torque 

and spin-velocity ω in all three directions (x, y 

and z). 

 

4. Theory 
 

The theoretical steady state description of the 

ferrofluid entrainment in a rotating magnetic 

field is done in the cylindrical coordinate system  

where the fluid velocity only has an azimuthal 

component (vφ) and the spin velocity is only in 

the vertical z direction (ωz) with rotating 

magnetic field components in the Cartesian x and 

y directions. 

Analytical spin diffusion expressions for the 

azimuthal velocity and spin velocity profiles 

have previously been derived [22, 24] and are 

given in Eqs 11-12. 
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The ferrofluid magnetization M, is obtained as a 

solution from the relaxation equation given in 

Eq. 3. I0 and I1 represents the modified Bessel 

function of the first kind of order zero and one 

respectively.  

 The angle α represents the lag angle between 

the magnetization vector M and the applied 

rotating magnetic field Happlied rotating at angular 

frequency Ω. It can be determined to be a 

solution to a cubic algebraic equation given in 

Eq. 16 [22]. Eq. 16 is derived assuming that 

there is bulk flow is absent in the fluid [22]. The 

effect of absent bulk flow on the lag angle α is 

too small to result in any considerable effect on 

the solutions of Eq. 11 & 12. 
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where 
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and 
 V � tan N (18) 
 

A subtlety is the adjustment of the magnetic field 

applied outside the ferrofluid to the magnetic 

field inside the ferrofluid. For a rotating 

magnetic field applied in the Cartesian x-y plane 

this adjustment is given by Eqs 19 and 20, where 

½ represents the demagnetizing factors for an 

infinitely long cylinder with a field being applied 

transverse to the cylinder’s axis. H[\\=?!@] , H[\\=?!@^ represent the applied rotating 

magnetic field amplitude in the x and y 

directions, H<=>?@] , H<=>?@^  represent the magnetic 

field internal to the ferrofluid and Mx and My 

represent the ferrofluid magnetization in x and y 

directions. 
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5. Modeling  

 
5.1 Model Setup and Parameters 

 
A spin-up experiment was modeled using 

parameters taken for ferrofluid EMG900_2 used 

by Chaves in [12]. The parameters used are 

documented in Table 1. 

 

5.2 Using Mathematica  

 

Eqs 11-18 were solved using Mathematica 8.0 to 

give analytical solutions for the spin-up problem 

using parameters taken in Table 1. 
 

Parameter Value 

τeff (s) 1x10-6 

ρ (kg/m3) 1030 

η (Ns /m2) 0.0045 

μ0Ms(mT) 23.9 

ζ (Ns/m2) 0.0003 

Frequency (Hz) 85 

Radius of cylindrical 

vessel (m) 

0.0247 

Radius of stator (m) 0.0318 

Volume Fraction (%) 4.3 

χ
 

1.19 

Ω (rad/s) 534.071 

η' (kg m/s) 6x10-10 

B0 (mT) RMS 10.3,12.5, 14.3 

B0 (mT) amplitude 14.57,17.68, 20.22 
 

Table 1. Table of physical and experimental 

parameters used by Chaves in one spin-up experiment 

using EMG900_2. 

 

5.3 Using COMSOL Multiphysics 3.5a  

 

5.3.1 Modeling the Rotating Magnetic field  

 

There are two ways to model the magnetic field, 

one is by using a current source boundary 

condition (AC/DC module – Perpendicular 

Induction Currents, Vector Potential) while the 

other is by using a scalar potential boundary 

condition (General PDE). Both methods were 

explored using parameters taken from  

Table 1. 

 

 

 



5.3.2 Surface Current Boundary Condition  

 

The actual experimental setup is similar to 

Figure 1 and involves placing a cylinder of 

ferrofluid inside a stator winding (itself 

surrounded by a material with assumed infinite 

magnetic permeability) of radius R0 with an air 

region in between. The resulting magnetic field 

in the air region is a uniform field imposed by 

the current source and a dipole field created by 

the ferrofluid. 

The source of the magnetic field is a 3 phase 

2 pole stator winding with each phase having 

120⁰ phase difference from each other. This 

requires a surface current boundary condition 

driving the three phase coils in the axial (z) 

direction of the cylinder which can be described 

by Eq. 21 where Ω is the rotational frequency 

and φ the angle from the x axis.   
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Figure 1. Two dimensional representation of actual 

spin-up flow experiment. Shaded region represents the 

infinitely long cylinder of ferrofluid of radius R0. The 

unshaded air region separates the ferrofluid from the 

outer stator winding that has a current boundary 

condition imposed at r=R1 surrounded by a µ=∞ 

region. 

5.3.3 Scalar Potential Boundary Condition  

 

Although setting up the model using the current 

boundary condition can be accomplished in 

COMSOL Multiphysics, it can be difficult to 

solve. A simpler method of setting up the 

magnetic field using the magnetic scalar 

potential can be used and has been used before 

by other authors [25]. The fact that the ferrofluid 

region of interest is only affected by the uniform 

field imposed allows for this setup to be 

simplified to a one region problem, similar to 

Figure 2, to aid the numerical simulation 

process. 

To describe the uniform rotating field in 

Cartesian coordinates the external fields (Happlied) 

are sinusoidal functions of time with rotational 

frequency Ω and 900 out of phase with each 

other. Eq. 22 generates a counter-clockwise 

uniform rotating magnetic field of magnitude H0 

and the corresponding magnetic scalar potential 

is given in Eq. 23. 
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where H0 is related to the surface current as 
 

H� � 3
2d� 

(24) 

The one region case has a subtlety which was 

explained in section 3 where a correction of the 

field value used inside the ferrofluid (Hfluid) has 

to be made as seen in Eqs 19 & 20. This is then 

the field source substituted in Eq. 8 and used in 

the magnetic relaxation equation in Eq. 3. 

 
Figure 2. One region model setup with shaded circle 

representing ferrofluid with linear magnetization and 

boundary condition on magnetic scalar potential. The 

scalar potential generates a magnetic field rotating in 

the φ direction at frequency Ω. This magnetic field 

represents the external magnetic field and has to be 

corrected for demagnetizing effects before being used 

in the magnetic relaxation equation.  The arrows 

inside the stator show the uniformly distributed 

rotating magnetic field created inside the ferrofluid at 

a particular instant in time. 

5.3.4 Modules used and Fluid Boundary 

Conditions 

 

 All equations were put into COMSOL in 

non-dimensional form and in all cases the 

transient form of the equations were used.  
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modeled as a linear material. A simple 

verification can be given by the following 

calculation 
 

�<=>?@ � �[\\=?!@  1
2� m � � n� m  

�<=>?@ � �[\\=?!@
1 � 12 χ  

 

 

(27) 

 

If the normalized applied H field is 1 and χ=1.19, 

this results in an |�<luid| � 0.627 and |�| �0.746. Both these values are obtained in 

COMSOL as seen in Figure 6 and Figure 7. This 

subtlety would be difficult to realize and has to 

be accounted for, as demonstrated in this 

analysis, when using the one domain scalar 

potential boundary condition. 

 In addition, theoretical sweeps of η' can also 

be done using COMSOL to investigate spin 

viscosity dependence on velocity flow profiles as 

seen in Figure 8.  

 

8. Conclusions 
 

 This work describes the modeling of spin 

diffusion dominated ferrofluid flows neglecting 

demagnetizing effects associated with the shape 

of the finite height ferrofluid cylinder. It 

benchmarks experimental results of spin 

diffusion dominated ferrofluid spin-up flows, 

with COMSOL simulations and analytical 

solutions computed using Mathematica.   

 The experimentally fit values of spin 

viscosity do result in COMSOL simulations that 

are in good agreement with experimental results 

but these values of spin viscosity are many 

orders of magnitude greater than theoretically 

derived values [18, 19, 21, 22, 26, 27]. In 

addition, COMSOL could also be used to 

investigate the effect of spin-viscosity on 

ferrofluid flow profiles. 

 Two different implementations for modeling 

the magnetic field did give a deeper 

understanding of the physics of the magnetic 

relaxation equation and also of the subtlety 

involved in modeling it as a one domain 

problem. 
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