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Introduction: Find the relativistic quantum
mechanics steady state wave function ¥n(x,y,z,t) as a
solution to the Dirac equations with a pre-existing EM
traveling wave via magnetic and electric potentials
A, ¢. The probability density, p, of a particle’s
location is given by p=%|¥m|2 m=1..4.

Computational Method: The EM Dirac equations
[1] for the behavior of a particle of mass m with
M=mc/h, c=light speed, h=Planck’s constant, A=Ae/h,
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are solved with COMSOL’S “General-
@ Form PDE”. When the wave vector
k is in the xy plane, 0¥m/0z terms
drop out and the 1st & 4th egs.
decouple, where W1,%4 are solved alone.
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e Fig.2 PW Thru Slit into EM Field examines the slit

driven ¥h=W,, ewt wave propagation into the spatial
domain (Fig.2 inset)for 4 values of the freq. parameter n=
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e Fig.3 CYL.Wave in EM Fi
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the Wn=Won(8) e-ivt inner radius driven cylindrical
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and is shown for 2 values of electric field strength parameter
oe={.0, -.0032}. Figs.(3a-b) compares Exact re¥sS.S. limit vs
transient FEM @ t'=t/Tp=18 for EM field off (i.e. ae=0).
= ~— " Figure (3d) shows the
\  effect of EM turned
| on(i.e. oe=-.0032).
/' Zones in Fig.(3c)
(where local S.S.
wavelength A deviate
from 1), line up with
Fig.(3d) re W4 distortions
(compare encircled
“A” markers). Inset
Fig.(3e) shows the
pre-existing EM wave.
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e Fig.4 2 Slit Demo: Electric E Field On Particles
fired at 2 slits, is a classic quantum mechanics
demo, represented by a free field Wn=W,, e xkywt)
PW wave function incident upon the slits. Figs.(4a-
d) show a time snapshot growth of the reW¥s
component. Bands of constructive & destructive
interference form where the effect of the EM field
(with electric field strength parameter oe=-0.02) is to
curve the blades like Fig.(4c) as compared to
otherwise straight bands when the EM field is tumed off.
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A is shown in the
lower Fig.(4a-d) insets
where big deviations
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t'=28 v v (x.:-_'ooaz v d =7 where ¥, distortions are
g all = .6/16 expected. The A field

ot changes in each frame.

Conclusions: The General-Form PDE option
successfully solved the EM transient Dirac
equations. The classic 2 slit model produced EM
influenced curved constructive interference bands
(compared to EM off straight ones). The A’s local
S.S. wavelength gives a-prori estimates where “EM
on” effects the solutions and guides mesh selection).

References:1. P. Strange, Relativistic Quantum
Mech., Camb. Univ. Press 1998



