Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Energy Exchange During Electron Emission from Carbon Nanotubes: Considerations on Tip Cooling Effect and Destruction of the Emitter

M. Dionne, S. Coulombe, and J. Meunier
Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada

Murphy and Good general theory for electron emission from metal surfaces was used to predict the field-emission capabilities of ideal arrays of vertically aligned carbon nanotubes (VACNT). The Nottingham effect was taken into account in order to explain experimental observation of a localized cooling of the VACNT tips during field emission and the total destruction of very short emitters at ...

Hybrid Multiscale Modeling of Corrosion Nanoinhibitors Transport

C. Trenado[1], D. Strauss[1,2], and M. Wittmar[2]
[1]Computational Diagnostics & Biocybernetics Unit, Saarland University Hospital, Homburg, Germany
[2]Leibniz-Institute for New Materials, Saarbrücken, Germany

Progress in coating technology has allowed for the development of free-chromate corrosion inhibitors, which are able to smartly migrate when required. In order to support the coating design, we propose a hybrid mathematical model to study the inhibitor's release by taking into account the thermodynamics and kinetics involved in the corrosion process. The proposed model is ...

Finite Element Modeling of Dielectric-Paraelectric Composite Materials

K. Zhou, S. Alpay, and S. Boggs
Institute of Material Science, University of Connecticut, Storrs, CT, USA

Finite Element analysis is used to model 2-D and 3-D paraelectric-dielectric composites (BaTiO3 spherical fillers randomly distributed in constant dielectric matrix). The effective dielectric response and tunability are studied under different filler sizes and different volume fractions. The results are consistent with previous theoretical and experimental results: with the increasing of filler ...

An Agglomerate Model for the Rationalisation of MCFC Cathode Degradation

B. Bozzini[1], S. Maci[1], I. Sgura[2], R. Lo Presti[3], and E. Simonetti[3]
[1]Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy
[2]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[3]ENEA Casaccia, Dipartimento TER, Centro Ricerche Casaccia, S. Maria di Galeria, Roma, Italy

This paper describes the numerical modeling of a key material-stability issue within the realm of Molten Carbonate Fuel Cells (MCFC). The model describes the morphological and attending electrocatalytic evolution of porous NiO electrodes and is apt to predict electrochemical observables that can be recorded during Fuel Cell operation. The model has been validated with original experimental data ...

Benefits of COMSOL Multiphysics® Version 4

Ed Fontes
Chief Technology Officer, COMSOL

Ed Fontes is CTO at COMSOL with specific interest in the transport-reaction products. He has 14 years experience of modeling transport phenomena in industry and 6 years of supervising research projects in Academia. Ed Fontes received his PhD in Electrochemical Engineering from the Royal Institute of Technology (Stockholm, Sweden) in 1995.

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool ...

Coupled Hydro-Mechanical Analysis of Excavation Damaged Zones around an Underground Opening in Sedimentary Rock

H. Abdi[1], E. Evgin[1], M. Fall[1], T.S. Nguyen[2], and G. Su[2]
[1]University of Ottawa, Ottawa, ON, Canada
[2]Canadian Nuclear Safety Commission, Ottawa, ON, Canada

A large amount of research work has been carried out in many countries to determine the viability of radioactive waste disposal in deep geological repositories. It is well known that excavation can cause damage around underground openings. On the other hand, the mechanical damage can influence the stability of the opening and the flow characteristics of the rock mass. In addition, all physical ...

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population dynamics, genetic exchange and competition. Temperature reaction norms of reproduction rates are conferred by a two ...

COMSOL Multiphysics, TOUGHREACT and Numerrin Comparison in Some Modelling Tasks of Spent Nuclear Fuel Disposal

A. Itälä[1], V-M. Pulkkanen[1], M. Laitinen[2], M. Tanhua-Tyrkkö[1], and M. Olin[1]
[1]VTT Technical Research Centre of Finland, Espoo, Finland
[2]Numerola Oy, Jyväskylä, Finland

Bentonite clay is used as a protecting barrier around both the copper capsules in deposition holes and in deposition tunnels in the KBS-3 final disposal concept for spent nuclear fuel. The performance of these bentonite barriers will be investigated both experimentally and by modelling. Both approaches are needed, because for example the time span in question (hundred thousand years or even ...