Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Simulation of a Packed Bed Reactor

A.E. Varela[1], and J.C. García[1]

[1]University of Carabobo, Valencia, Venezuela

Most reactor designs are based on pseudo homogeneous models. This paper studies the COMSOL simulation of a packed bed reactor using a 2-D heterogeneous model. The case considered was a packed reactor with spherical catalyst for oxidation of o-xylene in air to phthalic anhydride. Large differences in intra-pellet temperature were found in comparison with the average temperatures resulting from ...

Heat Transfer in Adsorption Heat Exchangers between Pellets and Fins - new

E. Laurenz[1], G. Füldner[1], L. Schnabel[1]
[1]Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg, Germany

Adsorption heat exchangers (AdHXs) are important components in adsorption heat pumps and chillers, a primary energy efficient source of heating and cooling. Due to availability and established inexpensive manufacturing fin-and-tube type heat exchangers with beds of adsorption pellets in the finned space are widely used in state of the art products (Figure 1). For design and optimization the ...

Mechanistic Modeling of Non-Spherical Bacterial Attachment on Plant Surface Structures

A. Warning [1], A. K. Datta [1],
[1] Cornell University, Ithaca, NY, USA

The particle tracking model provided a deeper understanding to the experimental results. The model showed good agreement with experimental data for rotation, transport and attachment. In the attachment model, protrusions create low velocity, low shear regions increasing attachment while holes pull cells toward the surface and increase residence time on the surface increasing attachment rate.

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Simulation of the Coalescence and Subsequent Mixing of Inkjet Printed Droplets

M.H.A. van Dongen[1], H.J. van Halewijn[2]
[1]Fontys University of Applied Sciences, Expertise Centre Thin Films & Functional Materials, Eindhoven, The Netherlands
[2]Fontys University of Applied Sciences, Eindhoven, The Netherlands

Coalescence of droplets is a widely investigated phenomenon. In inkjet printing micrometer sized droplets are deposited on a substrate which when positioned close enough to each other will coalesce and mix. Little is known about the flows and mixing behaviour within these small droplets. In this investigation we follow the time evolved coalescence of two droplets with volume ratios ranging from ...

Two-Phase Flow Models of Gas Generation and Transport in Geological Formations

O. Silva [1]
[1] Amphos 21 Consulting S.L. - iMaGe Consortium, Barcelona, Spain

Gas generation and transport through porous media is a process common to many field applications such as radioactive waste and underground gas storage. In these operations, the gas phase evolution depends on the thermodynamic conditions at depth, the properties of the fluids (density, viscosity, surface tension) and the geological formation (permeability, porosity, retention curve), as well as ...


韩建宁 [1], 罗世通 [1],
[1] 中北大学,太原,中国

基于声学透镜的声学聚焦技术已经在医学检测及医学治疗中有着广泛应用,特别是在 HIFU 技术中有着重要的地位。虽然近几年声学聚焦技术已经有着很多的成果,但是由于“衍射极限”的问题,聚焦区域有一定的限制。声学超材料技术是当前物理领域的热点,该技术的相关成果和优势已经渗透到多个学科的研究中。本文为了更好地抓住学科交叉的技术优势,发挥声学超材料在声学聚焦技术中的优势,使用 COMSOL Multiphysics® 进行了水下聚焦超声技术研究,得到了较好的实验效果。这些研究对推动我国的声学透镜技术研究有较大的帮助,对基于 COMSOL 的有限元分析声学透镜技术有较大的借鉴。

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium vapor ...

Sulfur Deactivation Effects on Catalytic Steam Reforming of Methane Produced by Biomass Gasification

P. Sadooghi[1], R. Rauch[1]
[1]Vienna University of Technology, Vienna, Austria

Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. Desulfurization has a negative effect on the process efficiency therefore steam reforming has to be run without ...

Implementation of a Porous Media Model for Simulating Pressure Development in Heated Concrete

B. Weber [1], D. Dauti [2], S. Dal Pont [2],
[1] Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
[2] Laboratoire 3SR, University Grenoble Alpes, Grenoble, France

When concrete is subjected to high temperature, capillary water evaporates and chemically bound water is released due to dehydration. This results in an increase of pore pressure, which is believed to be one of the mechanisms leading to spalling. Spalling of concrete is of high concern for the fire safety of concrete structures. We consider a model implemented in COMSOL® using the Weak Form ...