技術情報とプレゼンテーション

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Magnetic Nanoparticles for Novel Granular Spintronic Devices

A. Regtmeier[1], A. Weddemann[2], I. Ennen[3], and A. Hütten[1]
[1]Dept. of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
[2]Dept. of Elect. Eng. and Comp. Science, Lab. for Electromagnetic and Electronic Syst., MIT, Cambridge, MA
[3]Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria

Superparamagnetic nanoparticles have a wide range of applications in modern electric devices. Recent developments have identi fied them as components for a new type of magnetoresistance sensor. We propose a model for the numeric evaluation of the sensor properties. Based on the solutions of the Landau-Lifshitz-Gilbert equation for a set of homogeneously magnetized spheres arranged in highly ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

A Study of Lubricating Flows in MEMS Bearings

E. Gutierrez-Miravete[1], and J. Streeter[2]

[1]Department of Engineering and Science, Rensselaer at Hartford, Hartford, Connecticut, USA
[2]Optiwind, Torrington, Connecticut, USA

The bearing and shaft are part of a safe and arm device constructed as an assembly by a multi-layer additive/subtractive plating and planarization processes (EFAB technology). Devices are constructed by a multi-layer additive/subtractive planarization process. This paper evaluates the lubricating flow between the shaft and journal of the MEMS bearing for seven configurations. The pressure ...

Applied Multiphysics in Thermoresistive and Magnetoresistive Sensor Models

R.W. Pryor
Pryor Knowledge Systems, Inc.
COMSOL, Certified Partner

Efficient, effective, and functional operation of autonomous systems requires a comprehensive real-time understanding, by those systems, of the embedding environment. This paper presents a brief overview of the multiphysics considerations involved in the development of models for thermoresistive and magnetoresistive sensors systems.

A Magnetically Driven Micro-Mixing Device and its Numerical Analysis

A. M. Morega1, J. C. Ordonez2, and M. Morega1
1Politehnica University of Bucharest, Bucharest, Romania
2Florida State University, Tallahassee, FL, USA

In this paper, we present a FEM model of a mixing MEMS μTAS device. A quasistatic magnetic field, produced by sequentially switched DC currents advected through conductors embedded in the device substrate beneath the flow channel, is used to mix the working magnetic fluid, while it is forced to flow through a rib walled channel. The body forces in the magnetized fluid perturb the otherwise ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the intrinsic ...

Combined Analytical and Numerical Modeling of a Resonant MEMS Sensor for Viscosity and Mass Density Measurements

S. Cerimovic[1], R. Beigelbeck[2], H. Antlinger[3], J. Schalko[2], B. Jakoby[3], and F. Keplinger[1]
[1]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria
[2]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[3]Institute for Microelectronics and Microsensors, Johannes Kepler University Linz, Linz, Austria

A resonant MEMS sensor for viscosity and mass density measurements of liquids was modeled. The device is based on Lorentz-force excitation and features an integrated piezoresistive readout. The core sensing element is a rectangular vibrating plate suspended by four beam springs. The liquid surrounding the plate influences the resonant behavior of the system. Thus, evaluating the properties of ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler fabrication ...

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

FEM Correlation and Shock Analysis of a VNC MEMS Mirror Segment

E. Aguayo[1], R. Lyon[2], M. Helmbrecht[3], S. Khomusi[1]
[1]The Newton Corporation, Bowie, MD, USA
[2]NASA Goddard Space Flight Center, Greenbelt, MD, USA
[3]Iris AO, Inc., Berkeley, CA, USA

Microelectromechanical systems (MEMS) are becoming more prevalent in today’s space technologies. The Visible Nulling Coronagraph (VNC) instrument, being developed at the NASA Goddard Space Flight Center, uses a MEMS Mirror to correct wavefront errors. This MEMS, the Multiple Mirror Array (MMA), will enable the VNC instrument to detect Jupiter and ultimately Earth size exoplanets. The MMA ...

Quick Search