研究開発におけるマルチフィジックスシミュレーションの具体例
さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.
COMSOL Conference 2024 論文集を見る
Despite its real advantages compare to seeded sublimation growth, SiC solution growth has never given convincing results. The difficulty of stabilizing the growth front, and thus avoiding any polycrystal formation results from a poor description and understanding of the coupled phenomena ... 詳細を見る
Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the ... 詳細を見る
Fuel cells (FCs) are promising as an energy producing device, which at this stage of development will require extensive analysis and benefit from numerical modeling at different time- and length scales. COMSOL Multiphysics® is used to describe an intermediate temperature solid oxide fuel ... 詳細を見る
This paper presents model development and simulation results for a microdroplet generator capable of internally measuring the volume of dispensed droplets. The system’s integrated sensing is enabled by storing compressible gas adjacent to the dispenser’s liquid reservoir. During ... 詳細を見る
Flow electrolysers find several applications in industry. They are used for production of metals and synthesis of chemicals, gases. Cleaning and preservation of old artifacts, electrolytic refining of metals, electrolytic winning of metals, alkaline water electrolysis, anodization, ... 詳細を見る
This paper presents a numerical study of the deposition of spherical charged nanoparticles caused by convection and Brownian diffusion in a pipe with a cartilaginous ring structure. The model is supposed to describe deposition of charged particles in the upper generations of the ... 詳細を見る
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... 詳細を見る
With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses ... 詳細を見る
We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many ... 詳細を見る
In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing ... 詳細を見る
