研究開発におけるマルチフィジックスシミュレーションの具体例
さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.
COMSOL Conference 2024 論文集を見る
传统光学镜片在制造后规格固定,无法调节。尽管空间光调制器(SLM)能够实时调制光的相位或强度,但其分辨率、速度和功率限制使其在高功率或高帧率应用中表现不佳。可变形镜(DM)和微透镜阵列(MLA)因反馈回路复杂和响应速度较慢,难以满足超快脉冲激光器的要求。声光效应通过调节介质的折射率来实现光束调制,为克服这些局限性提供了有效的解决方案。在本研究中,我们使用了 COMSOL Multiphysics® 软件中的压力声学、固体力学、电路、几何光学和静电场模块进行仿真。首先,我们开发了一个二维声学透镜模型,以模拟液体在压电陶瓷片振动影响下形成的声压场 ... 詳細を見る
“页岩气革命”使美国成功摆脱了对他国能源的严重依赖,目前我国页岩气的勘探开发也已取得了突破性成果,但是随着页岩气的开发,仍存在三大问题困扰着科学工作者和现场工程师:(1)页岩气开发过程中的渗透率演化规律尚未摸清;(2)在产气过程中,页岩气在产量上往往呈现出不确定性;(3)缺乏针对页岩气进行历史拟合和产量预测的数学工具。针对以上三个主要问题,我们定义非常规储层固有渗透率的演化是裂隙和基质之间物质传输和应力传递的结果,并建立了离散体模型研究孔隙变形与流体流动之间的耦合作用;以此为基础,我们建立双基质双重孔隙介质模型(连续介质模型)研究页岩基质变形与流体流动之间的耦合关系 ... 詳細を見る
随着社会进步和发展,能源紧缺的问题日益突出。生物柴油因十六烷值高、无毒、可再生等突出优势正成为新能源开发热点。微波辅助生物柴油制备反应时间短、能耗小、环境污染少,所以设计高效的微波反应釜制备生物柴油势在必行。 针对微波反应器在生产生物柴油时加热不均匀的问题,本文设计了一种可以明显改善微波加热均匀性的夹层釜式微波反应器。然后,再引入能改善物料流体传热的搅拌桨装置。通过电磁场、温度场和流场控制强化液体物料传质传热,进而促进生物柴油的制备。本文所有的仿真工作均通过COMSOL软件进行,分别是用于计算反应器内电磁场分布的“电磁波,频域(emw)”接口 ... 詳細を見る
锂离子电池在过充的情况下,由于负极余量不够会在负极表面析出一层锂金属,一方面,析锂会造成大量的锂离子损失,造成内阻增加和容量衰减;另一方面,如果析出的锂继续增长会生成锂枝晶,锂枝晶会刺穿隔膜造成内部短路触发热失控,对电池的安全性造成极大的威胁,因此检测析锂对电池管理系统至关重要。该工作采用COMSOL Multiphysics中的锂离子电池模块,通过增加析锂动力学方程的方法,为26650圆柱形锂离子电池建立了过充条件下的析锂模型,并通过实验进行了验证。通过研究在0.2 C和0.5 C倍率下过充至4.5 V,4.6 V,4.7 V,4.8 V,和4.9 ... 詳細を見る
采用回转窑处理工业废弃物已有多年历史。工业废弃物里含有的有机物在高温下挥发、气化、裂解和燃烧,最后残留下含有硅、钙、铁等无机物,无机物构成了高温的具有一定粘度的炉渣。 高温炉渣夹杂着一定量的气泡。气泡可能从下列几个方面产生: 1)有机物裂解挥发产生的气体; 2)燃烧产生的气体; 3)夹带的气体; 4)液体在高温下的汽化。 从工业现场采集炉渣样品,获取了炉渣的微观结构。计算机模拟的过程揭示炉渣结构形成的过程。 研究表明,采用COMSOL Multiphysics流体力学模块和传递模块,二维非对称结构能够有效模拟高温炉渣的流动过程,解释了炉渣的形貌的形成过程。结果显示 ... 詳細を見る
高分子囊泡是一类由薄膜包裹液体而形成的“软粒子”,其在生物医药、化妆品以及食品等领域具有广泛的应用,是材料领域最富有意义的研究内容之一。与一般微纳米粒子相比,高分子囊泡在外场作用下极易发生形变,因而研究高分子囊泡在微流道中穿过受限孔洞的动力学行为对其在药物输运、细胞筛选、薄膜性能表征等应用领域具有重要的意义。 由于流体(高分子囊泡内部和外部流体)和固体(高分子囊泡膜)强烈地耦合在一起,再加上流体与膜边界的移动和变形,使得高分子囊泡实际的过孔图像十分复杂。本工作借助COMSOL Multiphysics流固耦合(FSIs)接口,运用任意拉格朗日-欧拉(ALE)算法 ... 詳細を見る
运用COMSOL Multiphysics 5.4软件锂离子电池接口建立18650圆柱电池全三维模型。首先,拆解18650电池,对电池内部结构有一个详细的了解,为建模做好准备。建模前应确定各部分材料及几何尺寸,18650电池几何尺寸为直径18mm,高度65mm。确定正负极层及隔膜的高度;确定涂层材料、相应的克容量、材料压实密度以及活性物质的比例,计算得出涂层厚度。正极集流体为铝箔,负极集流体为铜箔,选取铝箔、铜箔以及隔膜的厚度,计算出正极层、负极层、以及两层隔膜的厚度和,进而计算得出卷绕层数。运用各几何参数在COMSOL软件中建立电池的全三维模型结构如图1所示 ... 詳細を見る
多孔材料的透水过程模拟;假定多孔材料有限元模型中连通孔隙的水体,以自由渗透的方式通过所构建的多孔材料模型。纳维-斯托克斯方程(Navier-Stokes equation)是用于描述流体运动方程,可以看作是流体运动的牛顿第二定律,简称N-S方程。模拟采用了该运动方程。通过仿真研究获得了多孔材料有限元模型渗流速度云图和多孔材料有限元模型二维截线处水头压力分布图。结果表明: 多孔材料二维有限元模型的渗流速度在整个渗流段呈现不均匀分布趋势。孔隙之间的间隙越小,渗流速度越大,孔隙间隙越大则渗流速度越小。在最窄的孔隙中,速度幅度高于进口处,在通道横截面积增大的地方 ... 詳細を見る
微波辅助生物柴油生产越来越受到了人们的关注,但是,微波的不均匀加热也影响了微波辅助生物柴油的大规模生产。研究表明,连续流微波加热器可以有效地解决微波辅助生物柴油的批量生产问题[1],螺旋推进器也可以改善加热均匀性,于是仿真带有螺旋推进器的连续流微波加热器的生物柴油生产过程,有利于优化连续流微波加热器的设计,对提高微波辅助生物柴油生产效率有重要的意义。 本文使用了电磁场、旋转机械流、流体传热和化学反应接口。电磁场中的介电系数是关于温度和物质浓度的函数,流体的热参量由流体各组分的质量比等效所得[2]。计算采用步进求解的方法,先在频域求解电磁场,所得的耗散功率代入流体传热 ... 詳細を見る
氢能燃烧值高且无污染,被认为是人类社会摆脱对化石能源依赖的理想能源。目前氢能应用的主要瓶颈是氢存储。而氢存储的主要方式中,金属氢化物因其安全性高,循环性能好的优点,得到广泛的研究。但由于金属氢化物吸放氢反应的热效应、粉末床的传热和传质特性较差等问题,贮氢罐的吸放氢速率下降,成为限制应用的主要因素。最近十几年,贮氢罐吸放氢过程的数值模拟及相关模型得到广泛的研究。通过数值模拟方法可以优化设计贮氢罐,以期满足实际应用中的需求,同时节约设计成本。本文面对贮氢罐的实际指标(吸氢速率1.5 L min-1),采用COMSOL软件中的多孔介质传热、地下流动以及数学模块 ... 詳細を見る

 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                