The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Tilted Pad Thrust Bearing

Tilted pad thrust bearings are used in rotating machineries with high thrust loading. The thrust load is transferred from a sliding part to a stationary part through hydrodynamic oil films. The tilted pad thrust bearing consists of a series of flat surfaces sliding over stationary tilted pads. The space between the flat surface and the tilted pad is filled by a lubricant that is drawn in due to ...

Journal Bearing with Cavitation

A journal bearing is composed of an outer cylinder (bearing) wrapped around an inner rotating journal (shaft), with a lubricant separating the two. Under certain operating conditions, cavitation can occur between the bearing and the journal, leading to component damage and failure. Knowing the rate of cavitation is helpful when determining the maximum applied load. Cavitation occurs when the ...

Flow Through a Uniform Inclined Screen

This model simulates the flow through a uniform inclined screen using the Screen feature in Single-Phase Flow physics and compares the results with an analytic solution.

Natural convection in a closed cavity with mass conservation

Only fully compressible flow can guarantee the mass conservation in time in a closed cavity where the temperature increases. This is a simple proof of concept using the "gravity" option available in V5.2A.

1D Plane Slider Bearing

This benchmark model computes the load-carrying capacity of a one dimensional hydrodynamic slider bearing. The results are compared with analytic expressions obtained by solving the Reynolds equations directly in this simple case.

1D Step Bearing

This benchmark model computes the load-carrying capacity of a one dimensional hydrodynamic step bearing. The results are compared with analytic expressions obtained by solving the Reynolds equations directly in this simple case.

41 - 46 of 46 First | < Previous | Next > | Last