The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Turbulent Flow Through a Shell-and-Tube Heat Exchanger Cross Section

This model studies a part of a shell-and-tube heat exchanger where hot water enters from above. The cooling medium flows through the tubes that, in this model, impose a constant temperature at the walls. Furthermore, the tubes are assumed to be made of stainless steel and the heat flux is also modeled through them. The purpose of the model is to show the coupling between the k-omega ...

Finned Pipe

Finned pipes are used for coolers, heaters, or heat exchangers to increase heat transfer. They come in different sizes and designs depending on the application and requirements. When the fins are placed outside the pipe, they increase the heat exchange surface of the pipe so that a cooling or heating external fluid can exchange heat more efficiently. When placed inside the pipe, it is the inner ...

Parameterized Double-Pipe Heat Exchanger Preset Model

Double-pipe heat exchangers, with their typical U-turn shape, are one of the simplest and cheapest type of heat exchangers used in the chemical process industry. This example studies the cooling of hot oil (130°C) by a cool oil (60°C) entering in counter-current. As the oils flow through the system, the material properties of both change with the varying temperature. The model uses the Non ...

Silica Glass Block Coated with a Copper Layer

In this time-dependent model, a silica block of glass, coated with a thin copper layer is subjected to a heat flux. Copper is a highly conductive material, while the silica glass is of poor thermal conductivity, which sets up an highly-varied temperature differential. The model must therefore account for a highly conductive layer. This is done, using a the Highly Conductive Layer feature in ...

Radiative Heat Transfer in a Utility Boiler

This model uses the discrete-ordinates method (DOM) to analyze the radiative heat transfer in a utility boiler with internal obstacles. DOM is one of the most useful radiation models for prediction of radiative heat fluxes on the furnace walls of a combustion chamber. With this model, the behavior of the temperature and heat flux within the furnace and on the heat surfaces can be easily obtained ...

Thermal Contact Resistance Between an Electronic Package and a Heat Sink

This example reproduces parts of the study of Ref. 1 on the thermal contact resistance at the interface between a heat sink and an electronic package. Eight cooling fins equip the cylindrical heat sink and contact is made at the radial boundaries of the package. The efficiency of the device depends on the cooling of the fins and the heat transfer from the package to the heat sink. This model ...

Sun's Radiation Effect on Two Coolers Placed Under a Parasol

The Parasol and Solar Irradiation app illustrates how to model the thermal effects of the sun as an external radiative source. You can use the app to investigate the solar irradiation on a beach with two coolers placed in different positions under a parasol. You can vary the length of the day and set the location of the beach – anywhere throughout the world. A typical modification of this app ...

Heat Conduction with a Localized Heat Source on a Disk

This classical verification model solves the steady state temperature distribution in a plan disk heated by a localized heat source at its center. It shows and compare different ways to define a heat source localized on a small domain by representing it either as a geometrical point or a small disk. Both modelings have analytical solutions to which the obtained numerical results can be ...

Radiative Cooling of a Glass Plate

When producing glass, the glass melt is cooled down through radiation to form the final shape, subjecting it to stresses. Numerical treatment of radiative heat transfer, using the Radiative Transfer Equation (RTE), helps to optimize this process. COMSOL Multiphysics provides three discretization methods for modeling radiation in participating media and solving the RTE: the Rosseland ...

Cross-Flow Heat Exchanger

This model solves the fluid flow and heat transfer in a micro heat exchanger made of stainless steel. These types of heat exchangers are found in lab-on-chip devices in biotechnology and micro reactors, for example for micro fuel cells. The model takes heat transferred through both convection and conduction into account. A square cross-section is used for the fluid channels instead of ...