The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Diffraction Grating

This model uses the Wave Optics Module and the Ray Optics module to model the propagation of rays through a diffraction grating at different angles of incidence. It uses the S-parameters computed by the Electromagnetic Waves, Frequency Domain interface on a unit cell of the grating to specify the reflectivity and transmissivity of each diffraction order in the Geometrical Optics interface, ...

Thermally Induced Focal Shift

A modern high-power industrial fiber laser system can deliver up to 3kW of single-mode laser radiation on to surfaces to be cut, drilled, welded or marked. Even using highly transmissive materials, the optical component used to focus the laser beam onto target surfaces can be affected by the large amount of power carried by the light. As the laser beam passes through the optical components, ...

Solar Dish Receiver

A paraboloidal dish can concentrate solar energy onto a target (receiver), resulting in very high local heat fluxes. This can be used to generate steam, which can be used to power a generator, or hydrogen, which can be used directly as a fuel source. In this model, the heat flux arriving on the receiver as a function of radial position is computed and compared with published values. Corrections ...

Distributed Bragg Reflector

A distributed Bragg reflector (DBR) is a periodic structure formed from alternating dielectric layers that can be used to achieve nearly total reflection within a range of frequencies. In this model a Bragg reflector is modeled with a central wavelength of 550[nm] and stopband of 180[nm].

Michelson Interferometer

This model couples the Heat Transfer in Solids, Solid Mechanics and Geometrical Optics interfaces to compute the effect of thermal expansion of optical components on the interference pattern displayed by a Michelson interferometer.

Transparent Light Pipe

Light pipes are structures that can be used to transport light between different locations. In general, they can be divided into two major groups: tubes lined with a reflective coating and transparent solids that contain light via total internal reflection. In this tutorial, light is transported through a bent light pipe by total internal reflection. The effect of the pipe shape on the ...

Anti-reflective Coating, Multilayer

The simplest example of an anti-reflection coating is a quarter-wavelength layer. One big disadvantage of such a single-layer coating is that there is generally no practical material with the required refractive index to achieve a low reflectance. A combination of several layers can be used to reduce the reflection coefficient over a much wider range of wavelengths than a single layer while ...

Luneburg Lens

A Luneburg lens has a graded refractive index which leads to special focusing properties. This example model uses the Geometrical Optics interface to compute the ray trajectories and their optical path length.

Czerny-Turner Monochromator

A Czerny-Turner monochromator spatially separates polychromatic light into a series of monochromatic rays. This model simulates a crossed Czerny-Turner configuration that consists of a spherical collimating mirror, a planar diffraction grating, a spherical imaging mirror, and an array charge coupled device (CCD) detector. The model uses the Geometrical Optics interface to compute the positions ...

Distributed Bragg Reflector Filter

A distributed Bragg reflector (DBR) is a periodic structure formed from alternating dielectric layers that can be used to achieve nearly total reflection within a range of frequencies. The main advantage of DBRs over ordinary metallic mirrors is that DBRs can be engineered to have custom reflectances at selected wavelengths. This application allows the performance of two different kinds of DBR ...

1–10 of 18