Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Thermo-Fluidic Impulse Response and TOF Analysis of a Pulsed Hot Wire

O. Ecin, M. Malek, B. J. Hosticka, and A. Grabmaier
Chair for Electronic Components and Circuits
University of Duisburg-Esse
Duisburg, Germany

In this work the authors report on a CFD simulation of a pipe flow model. Fluid mechanics are here combined with heat transfer phenomena. To create a mathematical model of a pulsed hot wire system i.e., the thermo-fluidic impulse response of a pulsed hot wire, a simulation model is going to be analyzed which describes the impulse response according to the physics from thermodynamics. The ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A. Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only that these additional domains result in an increased number of degrees of freedom which are strictly ...

Theory of Proportional Solenoids and Magnetic Force Calculation Using COMSOL Multiphysics

O. Vogel, and J. Ulm
Heilbronn University
Campus Künzelsau
Künzelsau, Germany

Proportional solenoids are well-known and used in a wide range of applications today. This paper is about methods of influencing the characteristic force-stroke-curves of magnetic actuators by means of different pole geometries. The conical design of the stator pole which is mostly used to accomplish proportional solenoids is analyzed by both a simple analytic reluctance model and a FEM model ...

A Simplified Approach to the Contact in Thermo-mechanical Analysis of Refractory Linings

Y. Kaymak
VDEh Betriebsforschungsinstitut GmbH
Düsseldorf, Germany

The geometrical design and material choice for a refractory lining requires a good understanding of its thermo-mechanical behavior. Design engineers clearly need a tool for fast and efficient computation of thermo-mechanical state of refractory linings under various conditions. However, standard simulation models and their solutions suffer as the linings are composed of many refractory blocks in ...

Linking The Dimensions

A. Helfrich-Schkarbanenko[1], M. Mitschele[2], S. Ritterbusch[1], and V. Heuveline[1]
[1]Engineering Mathematics and Computing Lab (EMCL), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
[2]Institute for Analysis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

We consider a 3D boundary value problem arising in electrostatics. The potential is stimulated by current sources placed on a cross-section S of the domain. In many applications it is sufficient to know the potential in S. So, one is interested in an appropriate 2D model taking into account that the solution depends on the dimension of the domain. The idea is to find a corresponding 2D ...

Advanced Application of an Automated Generative Tool for MEMS Based on COMSOL Multiphysics

F. Bolognini
University of Cambridge
Cambridge, UK

This work presents a different use of COMSOL as an integrated component of a computational tool framework used to automate designs creation. CNS-Burst is a computational synthesis method that has been implemented with the aim of automatically generating solutions to an assigned design task. COMSOL is integrated in the method and used to evaluate the performance of the design solutions found. ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

Using Computational Multiphysics to Optimise Channel Design for a Novel PEM Fuel Cell Stack

F. A. Daniels[1], D. J. L. Brett[1], A. R. Kucernak[2], and C. Attingre[2]
[1]University College London, London, UK
[2]Imperial College London, London, UK

Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the current collector design on transport phenomena and consequent cell performance is investigated. The model ...

1 - 10 of 168 First | < Previous | Next > | Last