Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On The Use of a Diffusion Equation Model for Sound Energy Flow Prediction in Acoustically Coupled Spaces

Y. Jing, and N. Xiang
Rensselaer Polytechnic Institute, Troy, NY, USA

This paper studies sound energy flows through an aperture across two coupled spaces using a diffusion equation model. The so-called double sloped sound energy decay is believed to be caused by the sound energy exchange through the aperture coupling the two rooms. The room diffusion equation is first solved by COMSOL, then the time dependent energy flow is visualized via COMSOL arrow plotting, ...

Multiphysics Simulations in the Ultrasonic Industry

P.A. Colombo[1]
[1]DepQuest, Dalmine, Italy

This work focuses on the application of multiphysics finite element simulations in the manufacturing and application of high power ultrasonic machines. Industries providing big power ultrasonic solutions as in cleaning, welding, sonochemistry and cutting fields, already apply the finite element simulation approach, in the structural mechanics flavor, in the design and optimization of ultrasonic ...

Investigation of Scattering Effects in Colloidal Systems

D. M. Forrester [1],
[1] Loughborough University, Loughborough, United Kingdom

When the particles in a colloid come close to each other, multiple scattering in ultrasonic beams is no longer negligible and crowded particle effects emerge. The presence of each particle affects the scattering of all others, leading to coupling effects. We investigate the interaction of a range of sizes of particles, arranged periodically or randomly (in medium to high ultrasonic frequency ...

Characterization of the Process of Ultrasound Driven Dispersion of Nanoparticles in High Viscosity Liquids - new

P. Pasumarty[1], H. Choi[1]
[1]Clemson University, Clemson, SC, USA

Even though sonochemical reactors have been studied extensively for decades, there is limited data on their characterization when the volume of the sample is fixed. The Acoustics Module and COMSOL Multiphysics® software are used to resolve the pressure field. The validated numerical model will be used to compare different configurations; changing the Height (H), diameter (D) of the reactor and ...

Development of Mathematical Model for Determining Sound Reduction Index of Building Elements

J. Ratnieks, A. Jakovics, and J. Klavins
University of Latvia
Riga, Latvia

Although we know the physics inside a media where the sound waves propagate, determination of material\'s or structure\'s sound reduction index is not an easy task. The lack of good engineering solutions proves the point. The only reliable way to calculate the sound reduction index is to carry out an experiment.Therefore, the aim of this study is to develop a mathematical model that can ...

Numerical Study on Acoustic Field Generated by Dipole Sources in Noncircular Pipe

H. Zhang, W. Lin, and X. Wang
Chinese Academy of Sciences, Institute of Acoustics, Beijing, China

Acoustical well logging is an important technology for petroleum industry. Calibration and testing of tools in real wells is not feasible because the cost is high and the condition is not controllable. During manufacturing and maintaining, the logging tools are usually tested in a fluid filled circular pipe. The acoustic field in non-circular wells are calculated by using of the PDE mode of ...

Simulation of Active Underwater Cylindrical Acoustic Antenna

R. Lardat [1],
[1] Thales Underwater Systems, Sophia Antipolis, France

The simulation of a large acoustic cylindrical antenna made of numerous identical transducers is very often out of reach in terms of computational cost. Therefore the usual design procedure consist in optimizing the transducer standing alone, either in free field arrangement or sitting on a hard baffle. Once the antenna is produced, one can very often see problems arising on the antenna response ...

Beam Structure As an Acoustic Wave Sensor: A Study of the Effect of Sensor Design on Its Sensitivity to Noise

F. Akasheh[1], A. Biddle[1], W.S. Shepard Jr.[2], and B.B.B. Zhang[2]
[1]Tuskegee University, Tuskegee, AL, USA
[2]University of Alabama, Tuscaloosa, AL, USA

The detection and identification of the location of a sound source is commonly done using arrays of microphones. A recent new alternative approach has been proposed which involves the use of continuous structures, such as beams or plates, as acoustic wave sensors. The sound wave impinging on the surface of the structure causes it to vibrate and the measured surface displacements can then be used ...

Seat Motor Design Optimization - new

S. Qi [1], H. Cheng [1], L. Yang [1]
[1] Dare Auto, Inc., Plymouth, MI, USA

In this work, the production intent design of a motor with controller inside a car seat for head restraint function is analyzed and optimized using the COMSOL Multiphysics® software and the Application Builder. Parameter based multiscale FEA models were developed by using external CAD and COMSOL. Component and system level simulations were performed to guide design optimization and development. ...

301–309 of 309
Next |