研究開発におけるマルチフィジックスシミュレーションの具体例
さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.
COMSOL Conference 2024 論文集を見る
目前大部分研究集中于空气声学领域,水下声学超材料的报道相对较少。由于水的声学阻抗远大于空气,所以水下声学超材料的设计思路与空气中的相比有很大的不同。针对水下声学超材料,人们提出了一种声学软超材料的概念,即把密度或体积模量远小于水的材料填充在水介质中来构建超材料。然而如何有效且有实际应用价值地制备声学软超材料,仍然是一个难题。本工作通过结合3D打印和材料表面疏水性质,提出了一种制备以气泡为共振单元的超材料的通用方法。利用3D打印的方法制备表面疏水的镂空框架结构,将其浸没入水中后镂空框架中就会形成气泡。这种方法能实现水下三维气泡阵列的快速制备,气泡的形状、大小 ... 詳細を見る
由于在亚波长成像方面的潜在应用,双负声学超材料(同时具有负的有效密度和负的有效模量)受到了广泛关注。然而,已有的单带双负声学超材料的带宽限制了它的广泛应用。为了扩展双负带的带宽,电磁超材料中引入了多带双负超材料。最近,声学超材料研究人员设计了多带单负超材料。显然通过组合多带负有效密度和多带负有效模量超材料单元能够实现多带双负,可是单元间的阻抗不匹配影响声波的透射率。本文提出基于单负的亥姆霍兹共鸣器单元通过波导耦合实现多带双负的声学超材料单元。我们利用两个亥姆霍兹共鸣器耦合实现负密度和负模量的重叠,通过增加亥姆霍兹共鸣器实现多带双负超材料单元 ... 詳細を見る
定量分析生物颗粒形态的变化可以为疾病诊断提供依据。例如血红细胞形态的变化常常会伴随有相应的血液疾病[1],细胞的癌变常常伴随有细胞核形态的变化[2]等等。无标记的光学显微成像技术已经可以对生物颗粒的尺度和形状进行直接测量。光声显微成像技术 (PAM) 利用生物颗粒固有的吸光本领,已经可以对单个生物颗粒(如细胞和细胞器)进行成像[3]。 最近,光声流式仪(the photoacoustic flow-cytometry)已经实现了对单个生物颗粒进行连续检测[4]。然而,为了在大量的生物颗粒中快速检测生物颗粒的形貌,最好的方法是并非对其进行直接成像,而是采用高频光声显微技术 ... 詳細を見る
将结构健康监测(SHM)应用于机器结构故障检测是近些年发展的新方法,其优点是可以在线监控结构的“健康”状况。本文提出并研究了一种内嵌微管的高效结构健康监测(e-SHM)系统。结合快速成型技术,将微管嵌入结构内部,当对微管施加一定压力(真空或过压)时,闭合微管中的压力变化将变得极其敏感。当结构裂纹扩展到微管时,该处因压差瞬间产生压力变化,进而通过微管传播,最终信号被设置的压力传感器接收。通过实时监测微管的压力变化,便可实现结构裂纹的实时检测。本文的主要工作包括两个方面:(1)压力泄漏与负压波传播模型的设计与仿真。基于负压波的 e-SHM 系统齿轮的损伤监测的理论推导 ... 詳細を見る
扬声器仿真分析方法越来越受到电声企业关注,已成为扬声器设计的重要手段和发展方向。要想设计中高端扬声器,就必须建立一套完整的仿真分析方法。 本文介绍一种基于 COMSOL Multiphysics® 的用于中高端扬声器设计的仿真分析方法。该方法不仅包含了扬声器磁路、振动系统(结构)和声场的耦合分析,还模拟了温度对磁性材料和振动部件材料特性的影响。由于扬声器振动部件材料的粘弹性等特性,因此必须建立更为准确的材料模型。利用 COMSOL Multiphisics 软件丰富的第三方软件接口和二次开发功能,经数据后处理可得到声障板等条件下的声压级、谐波失真和互调失真等。 ... 詳細を見る
超材料是一类具有天然材料所不具备的特殊性质的材料[1-3]。近年来,有学者开始研究超材料对波的旋转效应,这一研究有着工程应用价值。江雪等[4]设计并实验验证了一种声场旋转器。江雪等[5]进一步研究了声场旋转器整体尺寸大小对其工作带宽的影响及声场旋转器中心处的旋转角度与其结构单元长度的关系。但未见声场旋转器结构单元尺寸对其工作带宽影响的研究。 本文采用 COMSOL Multiphysics® 的声学模块和结构力学模块模拟图1的俯视二维结构,采用完美匹配层以获得更好的模拟结果。 本文模拟了5个声场旋转器在不同频率下的声场,发现随着长方体结构单元长宽比的增加 ... 詳細を見る
基于声学透镜的声学聚焦技术已经在医学检测及医学治疗中有着广泛应用,特别是在 HIFU 技术中有着重要的地位。虽然近几年声学聚焦技术已经有着很多的成果,但是由于“衍射极限”的问题,聚焦区域有一定的限制。声学超材料技术是当前物理领域的热点,该技术的相关成果和优势已经渗透到多个学科的研究中。本文为了更好地抓住学科交叉的技术优势,发挥声学超材料在声学聚焦技术中的优势,使用 COMSOL Multiphysics® 进行了水下聚焦超声技术研究,得到了较好的实验效果。这些研究对推动我国的声学透镜技术研究有较大的帮助,对基于 COMSOL 的有限元分析声学透镜技术有较大的借鉴。 詳細を見る
在振动仿真中,网格量永远是考验工程师的重要问题,虽然计算机性能的提高可以解决一部分计算量问题,但这远远不够。一种有效的方式是进行二维计算,COMSOL Multiphysics® 中也有二维轴对称的几何维度,这极大地方便解决轴对称目标问题。但是由于空间维度的限制,只有当研究目标和其激励均为轴对称的情况才可以应用,这极大地限制了二维轴对称的应用。 在研究中,提出了一种针对二维轴对称目标的算法,以水下弹性结构声散射为例,建立了轴对称目标非轴对称载荷的模型。将需要三维建模计算的模型改为仅需要建立二维轴对称模型即可,大大降低了计算量。 在 COMSOL 的应用中 ... 詳細を見る
引言 多孔材料能够吸收大量声能且只反射少量声波,因此具有良好的吸声性能而被广泛地用于噪声的控制。梯度多孔材料吸声性能的实验研究已经有所开展,但相应的数值研究却很鲜见。 COMSOL Multiphysics® 的使用 本文分别用3层和6层孔隙度呈等差数列的多孔玻璃丝组合成梯度多孔玻璃丝(图1为由3层不同孔隙度的多孔玻璃丝组成的梯度多孔玻璃丝,空气区域为宽W、高H的矩形,余下区域为多孔玻璃丝区域),并根据 DBM 模型采用 COMSOL Multiphysics® 模拟组合成的梯度多孔玻璃丝的吸声性能。 结果 由图2,梯度多孔玻璃丝(3层)与相同厚度 ... 詳細を見る
