Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Effects of the Electrical Double Layer on Giant Ionic Currents through Single Walled Carbon Nanotubes

G. Zhang[1][,][2][,][3], S.L. Bearden [1]
[1]Department of Bioengineering, Clemson University, Clemson, SC, USA
[2]Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
[3]Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC, USA

Electrofluidic transport through a single walled carbon nanotube (SWCNT) is enhanced by electroosmosis. Electroosmosis is made possible in these devices by the combination of a large slip length within SWCNTs and the interfacial potential at the solution/nanotube interface. A computational model of a SWCNT device was developed using COMSOL Multiphysics to investigate the complete electrical ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Thermal-Optical Modeling of a Signal Enhancement Approach for Paper-Based Diagnostics

D. Gasperino [1]
[1] Intellectual Ventures Laboratory, Bellevue, WA, USA

INTRODUCTION: Point of care diagnostics aimed at low-resource settings need to be relatively simple, robust and low-cost. The most commonly-used diagnostic platform in these settings is the lateral flow assay (LFA). LFAs are paper-based immunoassays designed to perform on-strip binding with analytes in patient samples in order to generate a visual signal if disease-specific antigen is ...

Polymer Compositional Profile Controls By-Product Fate from Erodible Endovascular Scaffolds

T. Shazly, and J. Ferdous
Biomedical Eng., Mechanical Eng. Dept.
University of South Carolina
Columbia, SC

Erodible polymeric scaffolds can mitigate long-term risks associated with permanent implants currently used to treat ischemic artery disease. However, safe deployment of erodible scaffolds is predicated on understanding the interactions between evolved material by-products and local biological tissues. We developed an integrated computational model of polymeric scaffold degradation, by ...

Design of Multiple Ground System for Maternal Defibrillation - new

A. Jeremic[1], E. Khoshrowshahli[2]
[1]Electrical & Computer Engineering, McMaster University, Hamilton, ON, Canada
[2]Biomedical Engineering, McMaster University, Hamilton, ON, Canada

Although cardiac arrest may be statistically insignificant event financial and more important emotional costs in such cases are quite devastating. In this paper we study the effects of multiple grounding pads. Namely, we believe that by placing multiple pads in the lower abdominal part we would be able to decrease the current density that would be dissipated to fetus and amniotic ...

3-D Finite Element Modeling of Brain Edema: Initial Studies on Intracranial Pressure Using COMSOL Multiphysics®

X.G. Li[1], H. von Holst[1][2], J. Ho[1], and S. Kleiven[1]

[1]Division of Neuronic Engineering, KTH, Stockholm, Sweden
[2]Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden

Brain edema is one of the most common consequences of serious traumatic brain injuries which is usually accompanied with increased Intracranial Pressure (ICP) due to water content increment. A three dimensional finite element model of brain edema is used to study intracranial pressure in this paper. Three different boundary conditions at the end of Cerebral Spinal Fluid (CSF) were used to ...

Numerical Simulations Demonstrate Safe Vitrification and Warming of Embryos Using the Rapid-i™ Device

B.O.J. Johansson[1][2], Y.A. Tarakanov[1], H.J. Lehmann[2], and S.P. Apell[1]

[1]Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
[2]Vitrolife Sweden AB, Västra Frölunda, Sweden

During cryopreservation of human embryos, ice crystal formation in the embryos or in surrounding media may cause cryodamage to them and can be lethal. A strategy to avoid this is the vitrification procedure when the embryo and the surrounding medium undergo the transition to glassy state rather than a crystalline one during cooling. Similarly, recrystallization in the embryo or the medium must ...

Virtual Thermal Ablation in the Head and Neck using COMSOL Multiphysics

U. Topaloglu[1], Y. Yan[2], P. Novak[2], P. Spring[3], J. Suen[3], and G. Shafirstein[3]
[1] Department of Information Technology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[2]Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
[3]Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Thermal ablation in the head and neck requires accurate thermal dose delivery to target tissue while protecting the structure and function of nearby tissue and organs. In this study, we present a method that allows importing Computed Tomography (CT) scans to COMSOL, in order to model accurately the expected pathological outcomes prior to thermal ablation treatment. Thermal ablation of a virtual ...

Large Scale Invasion Of New Species And Of Genetic Information

O. Richter, F. Suhling, and S. Moenickes
Technische Universität Braunschweig, Germany

The spatial dynamics of the invasion of new species and genetic dispersal is studied under the presumption of rising temperature by using a coherent approach of coupled partial differential equations of the reaction diffusion type. The nonlinear reaction terms model the population dynamics, genetic exchange and competition. Temperature reaction norms of reproduction rates are conferred by a two ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...