Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Virtual Modeling of Thermo-Physiological Comfort in Clothing

P. Van Ransbeeck [1], R. Benoot [1], B. Van Der Smissen [1]
[1] University College Ghent, Faculty of Science and Nature, Department of Mechatronics, Belgium

This publication aims to investigate conjugate heat and mass transfer around a clothed virtual manikin. This research can be performed at different scales: (1) at material scale where a piece of textile is investigated in 1D or 2D space or (2) at system level where a clothed cylindrical body (2D) or a complete manikin (3D) is modeled. The work is based on previous methods and results from ...

Inverse Problem and a New Device to Estimate Thermal Conductivity of Composite Phase Change Material

M. Karkri [1], A. Nachaoui [2]
[1] Université Paris-Est, CERTES, Créteil Cedex, France
[2] Département de Mathématiques 2, Nantes Cedex, France

A new experimental device has been developed in order to characterize the phase change material (PCM) thermal properties (thermal conductivity k, sensible and latent heat thermal energy storage, cp and Lf) in the solid phase, during the solid-liquid transition and in the liquid phase. It allows to measure cylindrical samples of maximum 60 mm radius and 10 mm thick. A typical measurement consists ...

Analysis of Coupled Dynamics of Molten Salt Reactors

V. Di Marcello, A. Cammi, and L. Luzzi
Department of Energy, Nuclear Engineering Division (CeSNEF), Politecnico di Milano, Milano, Italy

This paper presents a preliminary analysis of the coupled thermo-hydrodynamics and neutronics of circulating nuclear fuel systems in a nuclear reactor that adopts a molten salt mixture. This flows up through channels in a graphite moderated core and plays the role of both heat generator and coolant. A strongly coupled system is needed since the velocity pattern is affected by the neutron ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Study of the Process, Design, and Operating Parameters Effect on the Efficiency of the Process Mill - new

A. K. Farouk[1]
[1]Department of Mathematics & Natural Science, University of Stavanger, Sandnes, Rogaland, Norway

This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers for milling of drill cuttings. An F.E model of the process mill was constructed using dimensions similar to ...

Numerical Modeling of the Original and Advanced TEMKIN Reactor for Catalysis Experiments in Laboratory Scale - new

D. Götz[1], M. Kuhn[1], P. Claus[1]
[1]Ernst-Berl-Institute/Chemical Technology II, Darmstadt, Germany

Many industrial, especially heterogeneously catalysed, processes are characterised by a strong interaction between the reaction kinetics and transport phenomena. Because experiments in laboratory scale can be very time- and cost-intensive, Temkin and Kul’kova developed a new reactor design for the direct testing of industrial catalysts. Based on this concept of linearly alternating catalyst and ...

Simulation and Experimental Validation of Direct Heating of Dhruva Fuel Rod for β Heat Treatment - new

B. Patidar, A. P. Tiwari[1], V. Patidar[1], M. M. Hussain[1], K. K. Abdulla[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashatra, India

β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is to see the feasibility of direct heating technique for heat treatment application. At present, heat treatment ...

Thermal Simulation of FCBGA Package with Heat Sink

M. R. Naik[1]
[1]Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In a modern IC design, the capability of predicting the temperature profile is critically important as well as cooling and related thermal problems are the principal challenges. To address these challenges, thermal analysis must be embedded within IC synthesis. This paper presents thermal analysis of the FCBGA chip with a 4mm×4mm×0.3mm silicon die. The silicon die dissipates heat flux of ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

An Integrated Numerical-Experimental Approach for Heat Transfer Analysis of Industrial Furnaces

G. Petrone[1], A. Adorisio[2], S. Adorisio[2], M. Calderisi[3], A. Cecchi[3], M. Scionti[1], F. Turchi[3]
[1]BE CAE & Test, Catania, Italy
[2]Gadda Industrie, Ivrea, Italy
[3]Laboratori Archa, Pisa, Italy

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal distribution inside an industrial furnace built for metal materials treatments. The main goal of the research is to find the geometrical and/or functional parameters responsible for a not homogeneous thermal distribution inside the internal volume of the furnace. During the ...