研究開発におけるマルチフィジックスシミュレーションの具体例

さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.


COMSOL コンファレンス 2020 論文集を見る

Multiphysicsx

Thermomechanical Design of a Gas Turbine Reheat Combustor Experiment Using FEM Analysis with the COMSOL Multiphysics® Software

F. M. Berger [1], M. Eser [1], T. Sattelmayer [1],
[1] Lehrstuhl für Thermodynamik, Technical University of Munich, Munich, Germany

Enhanced operational flexibility and low levels of pollutant emissions are achieved with a sequential arrangement of premixed combustion stages in gas turbines for power generation. In the second – reheat – combustion stage, hot flue gases of approximately 1500K are enriched with fuel ... 詳細を見る

Implementation of a Modified Anisotropic Creep Model for Clays with Use of the Physics Builder

M. Karlsson [1], J. Yannie [1],
[1] Chalmers University of Technology, Gothenburg, Sweden

In this work a modified anisotropic creep model with structure for soft soils was implemented by using the Physics Builder. The model is validated against boundary value laboratory test such as undrained tri-axial tests and CRS (constant rate of strain) tests. The implemented user ... 詳細を見る

Developing Solutions to Tonal Noise from Wind Turbines Using COMSOL Multiphysics® Software

J. M. Stauber [1], B. A. Marmo [1],
[1] Xi Engineering Ltd, Edinburgh, United Kingdom

Tonal noise from wind turbines can have effects on neighboring residences and its emission can result in strong regulatory penalties that can include the closure of wind farms. The authors present a model of a new broadband damping approach where containers filled with EniDamp™, an ... 詳細を見る

Simulation of Electro-Thermal Transients in Superconducting Accelerator Magnets

L. Bortot [1], M. Maciejewski [2], M. Prioli [1], B. Auchmann [3],
[1] CERN, Geneva, Switzerland
[2] CERN, Geneva, Switzerland; Lodz University of Technology, Lodz, Poland
[3] CERN, Geneva, Switzerland; Paul Scherrer Institute, Zurich, Switzerland

The paper presents the application of COMSOL Multiphysics® software to the modelling of superconducting accelerator magnets. A 2D magneto-thermal model is developed, using an equivalent magnetization formulation to take into account the eddy-currents’ effects. Due to the model ... 詳細を見る

Numerical Analysis and Experimental Verification of a Fire Resistant Overpack for Nuclear Waste

P. Geraldini [1], A. Lorenzo [1],
[1] Sogin S. p. A., Rome, Italy

Confinement systems for nuclear waste are usually designed to perform and ensure safety in view of all the assumed design basis events, including fires. Considering waste typology and radioactivity, the goal of the confinement system design is to protect the content of the steel drums ... 詳細を見る

Modeling and Simulation of Thermal Runaway in Cylindrical 18650 Lithium-Ion Batteries

A. M. Melcher [1], C. Ziebert [1], B. Lei [1], M. Rohde [2], H. J. Seifert [2]
[1] Karlsruhe Institute of Technology, IAM-AWP, Karlsruhe, Germany
[2] Karlsruhe Institute of Technology, Karlsruhe, Germany

In this work the coupled electrochemical-thermal model for a lithium-ion battery (LIB) based on porous electrode theory has been extended with contributions coming from exothermic side reactions based on an Arrhenius law to model abuse mechanisms, which could lead to a thermal runaway. ... 詳細を見る

Numerical Analysis of the Phase Change in High Power Latent Heat Storages with 3D Wire Structures

A. Schlott [1], J. Hörstmann [2], O. Andersen [1], J. Meinert [1],
[1] Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, Dresden, Germany
[2] Denso Automotive Deutschland GmbH, Department Heat Exchanger Application, Eching, Germany

Latent heat storage devices use the melting enthalpy of a so-called phase change material (PCM) to store thermal energy. Open porous metals, such as 3D wire structures, allow the design of systems with tailored storage capacity and power. A geometric unit cell was identified, modelled ... 詳細を見る

Spectroscopic Modeling of Photoelectrochemical Water Splitting

P. Cendula [1], J. O. Schumacher [1],
[1] Institute of Computational Physics, Zurich University of Applied Sciences, Winterthur, Switzerland

A photoelectrochemical (PEC) cell uses solar energy to split water to hydrogen and oxygen in single integrated device. Electrochemical impedance spectroscopy is a suitable tool to characterize recombination and reaction mechanisms in PEC cell. Full numerical drift-diffusion calculations ... 詳細を見る

Acoustic Fluid-Structure Interaction Modeling of Gravity Dams in the Frequency Domain

A. De Falco [1], M. Mori [1], G. Sevieri [2],
[1] University of Pisa, Pisa, Italy
[2] University of Florence, Florence, Italy

The assessment of the seismic safety of gravity dams is a topic of great importance in civil engineering. In this paper, fluid structure interaction modeling of gravity dams during earthquakes is investigated. In particular, this work aims to provide physical significance of a plan ... 詳細を見る

2D Axisymmetric Simulation of Pulsed Electrochemical Machining (PECM) of Internal Precision Geometries

M. Hackert-Oschätzchen [1], M. Kowalick [1], R. Paul [1], M. Zinecker [1], D. Kuhn [1], G. Meichsner [2], A. Schubert [3],
[1] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2] Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3] Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany; Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena ... 詳細を見る