研究開発におけるマルチフィジックスシミュレーションの具体例
さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.
COMSOL Conference 2024 論文集を見る
At the Technische Universität Chemnitz several academic institutions work on aluminum matrix composites (AMCs) within the Collaborative Research Centre SFB 692 HALS. Besides the development and analysis of these materials one main task is finishing machining of AMCs by an electrochemical ... 詳細を見る
Precise electrochemical machining (PEM) is a non-conventional machining technology, based on anodic dissolution of metallic work-pieces. In this study an additional extension of the precise electrochemical machining with a precise angle-controlled cylinder positioning is aimed. Due to ... 詳細を見る
This study presents investigations on a developed process design for manufacturing internal precision geometries by pulsed electrochemical machining (PECM) with help of multiphysics simulations. Therefore, a 2D axisymmetric transient model was created. The considered physical phenomena ... 詳細を見る
Precise electrochemical machining (PEM) is an innovative machining technology which results from further development of the electrochemical sinking. PEM works with pulsed low frequency direct current and oscillation of the tool electrode. As part of the project ‘Electrochemical machining ... 詳細を見る
In the Collaborative Research Centre 692 at TU Chemnitz several academic institutions work on aluminum matrix composites (AMCs). These materials consist of an aluminum matrix, which is reinforced by SiC or Al2O3 particles with dimensions less or equal 1 µm. One main task is finishing ... 詳細を見る
In this study the inverse Jet-ECM process of micro bores is investigated by help of multiphysics simulations. Based on the micro bore of a commercial sample nozzle a model geometry was derived. For simulating inverse Jet-ECM a transient model has been developed. Electric currents and ... 詳細を見る
Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the ... 詳細を見る
Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure for micromachining. Based on localized anodic dissolution three-dimensional geometries and microstructured surfaces can be manufactured using Jet-ECM. COMSOL Multiphysics is used at Chemnitz UT to simulate the ... 詳細を見る
Evaporative cooling is a promising cooling method for dissipating high heat fluxes in high power density applications. One possibility to enhance heat flux is a generation of microstructures into the cooler surface. This enlarges the cooler surface and systematically affects the fluid ... 詳細を見る
The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and ... 詳細を見る
