Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Fast Computation of Capacitance Matrix and Potential Distribution for Multiconductor in Non-Homogenous Multilayered Dielectric Media

S.M. Musa[1], and M.N.O. Sadiku[1]

[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the fast computational and modeling of multiconductor transmission lines interconnect in non-homogenous multilayered dielectric media using the finite element method (FEM). We illustrate the potential distribution of the multiconductor transmission lines for the models and their solution time. We compared some of our results of computing the capacitance matrix with method of ...

An Agglomerate Model for the Rationalisation of MCFC Cathode Degradation

B. Bozzini[1], S. Maci[1], I. Sgura[2], R. Lo Presti[3], and E. Simonetti[3]
[1]Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy
[2]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[3]ENEA Casaccia, Dipartimento TER, Centro Ricerche Casaccia, S. Maria di Galeria, Roma, Italy

This paper describes the numerical modeling of a key material-stability issue within the realm of Molten Carbonate Fuel Cells (MCFC). The model describes the morphological and attending electrocatalytic evolution of porous NiO electrodes and is apt to predict electrochemical observables that can be recorded during Fuel Cell operation. The model has been validated with original experimental data ...

A Model for High Temperature Inductive Heating

S.A. Halvorsen[1]
[1]Teknova AS, Kristiansand, Norway

COMSOL Multiphysics has been applied to develop a model for inductive heating. A coarse, lumped model of the interior of a high temperature reactor is coupled to finite element models for the electromagnetic field, the temperature distribution outside the reactor, and mechanical stresses in the crucible. The model can be applied to study operational conditions, thermal stresses, or design ...

Cascades of Secondary Particles in High Voltage Accelerators

M. Cavenago[1], P. Antonini[1][3], P. Veltri[2], N. Pilan[2], V. Antoni[2], and G. Serianni[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy
[3]Centro Ric. E. Fermi, Roma, Italy

A very simplified system for high voltage test is studied, considering reason for voltage holding failures which are not covered by conventional and local design criteria. A first understanding of the problem is obtained by solving the electrostatic potential in a 2D axis symmetric geometry, considering in detail the electrode shapes, and following a cascade of particle between opposite ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer Animal Model: Numerical Simulation of Temperature and Damage Distribution

M.F. Marqa, P. Colin, P. Nevoux, S. Mordon, and N. Betrouni
University of Lille, CHRU, Lille, France

Laser interstitial thermotherapy (LITT) is a cancer treatment technique in which laser fibers are introduced inside the tumor. While it destroys deep tumors, the LITT procedure allows minimizing the impact on adjacent healthy structures. One of the effective methods to perform treatment planning for LITT is simulation. We used COMSOL Multiphysics to simulate the heat distribution and thermal ...

Simulation of the Self Assembly of a Microchip on a Structured Surface using the Phase Field Method

N. Boufercha, M. Ghahremanpour, M. Schnaithmann, J. Sägebarth, and H. Sandmaier
Universität Stuttgart / IFF-MST, Nobelstr.12, Stuttgart, Germany

The presented paper describes a method for micro precision assembly of very small objects like future microchips, which have a lateral expansion equal to or smaller than 500 μm. The modelling and simulation of a fluidicbased micro assembly method for a microchip with a dimension of (500 x 500 x 100) μm3 is performed with COMSOL Multiphysics. The finite element method is used for ...

Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells

X. Wang[1], J. Peitzmeier [2], and S. Kapturowski[3]
[1]Oakland University, Rochester, MI, USA
[2]Michigan Technological University, Houghton, MI, USA
[3]The State University of New York at Buffalo, Buffalo, NY, USA

The flow channel design on bipolar plates affects proton exchange membrane (PEM) fuel cell performance by influencing reactant distribution and water removal in an operating fuel cell. The fuel cell performance can be improved by varying the type, size, or arrangement of channels. Two bio-inspired designs have been proposed by a research group at Oakland University, which results in ...

On the Drying Dynamics in Biofilters

F. Schönfeld
Hochschule RheinMain
University of Applied Sciences
Wiesbaden, Germany

The performance of biofilters relies on the presence of a sufficient amount of water in the biofilter material. And breakdown of filtration performance is often caused by inappropriate water content. The present study focuses on the drying dynamics within such filter, which are modelled as wetted porous media. Analyzing gas flow and water content we find that such systems exhibit instable ...

Optimization of the Lithium Insertion Cell with Silicon Negative Electrode for Automotive Applications

R. Chandrasekaran, and A. Drews
Research and Advanced Engineering
Ford Motor Company
Dearborn, MI

The US Advanced Battery Consortium (USABC) has established goals for long term commercialization of advanced batteries for electric vehicle applications. In this work, a dual lithium-ion insertion cell with silicon as the negative electrode and an intercalation material as the positive electrode is modeled using COMSOL Multiphysics. Both are composite porous electrodes with binder, void ...