Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimisation Of Filament Geometry For Gas Sensor Application

S. Gidon, M. Brun, and S. Nicoletti
CEA Minatec, Optronic Department, Grenoble, France

Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimise power consumptions of building. One technological approach is to use optical detection using specific absorption lines of CO2 molecules in the infrared domain close to 4.2 μm. Key features for a wider use in public and private buildings are power consumption and price. Such optical ...

Simulation of Interaction of Low-Temperature Plasma with Immersed Solids

V. Hrubý, and R. Hrach
Department of Surface and Plasma Science, Charles University, Prague, Czech Republic

The computer simulation with COMSOL Multiphysics has become a widely used technique for the study of various problems in the field of plasma physics. Despite the increasing performance of computers, fully three-dimensional particle simulations still have got extremely high demands on hardware and computer time. Although many problems could be solved by fluid models, results obtained by these ...

Simulation of the Mechanical Stability of Inkjet-Printed Hierarchical Microsieves

S.F. Jahn[1,3], S. Ebert[2], M. Hackert[1], W.A. Goedel[2], R.R. Baumann[3], and A. Schubert[1,4]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Chemnitz University of Technology, Physical Chemistry, Germany
[3]Chemnitz University of Technology, Professorship for Digital Printing and Imaging, Germany
[4]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Porous membranes with pore sizes in the micrometer scale are required in many micro systems dedicated to biological and chemical applications. If their thickness is in the same dimension like the pore diameter they are called microsieves. On the one hand, a thin membrane guarantees a small flow resistance but on the other hand the mechanical strength is reduced. We developed a process which ...

Experimental and Numerical Fluid Flows Study on a X-Millichannel

C. Wolluschek[1], F. Etcheverry[2], M. Cachile[2], and J. Gomba[3]
[1]Mecánica de Fluidos e Ingeniería Térmica, Centro tecnológico Cemitec, Noáin, Navarra, Spain
[2]Grupo de Medios Porosos, Facultad de Ingeniería, UBA, Buenos Aires, Argentina
[3]Instituto de Física Arroyo Seco, UNCPBA, Tandil, Argentina.

In this work, a COMSOL model that predicts velocity and concentration fields inside an X-shaped millichannel (4 mm diameter) is developed. Water and a ink low concentration are injected simultaneously in the two inlets of the device. The mass transfer problem is solved by a Fickian model (solute concentration is low compared with the solvent). The parameters in this study are: initial inlet mass ...

Transport Phenomena of Bubbles in a High Viscous Fluid

F. Pigeonneau
CNRS/Saint-Gobain, France

Dr. Franck Pigeonneau is currently working in the joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the company Saint-Gobain. He received his Ph. D. in 1998 from the University Pierre et Marie Curie (Paris, France). His main research activities are devoted to the transport phenomena in high viscous fluids relevant for glass melting processes. He is using COMSOL ...

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial . The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ...

Modeling Spectral Emission Phenomena in Beryllium Plasma Using COMSOL Multiphysics

C. Gavrila[1], C. P. Lungu[2], and I. Gruia[3]
[1]Technical University of Civil Engineering Bucharest, Romania
[2]National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
[3]University of Bucharest, Faculty of Physics, Bucharest, Romania

The purpose of this paper is to present a numerical modeling of plasma phenomena in beryllium emissions using COMSOL Multiphysics software. The Beryllium films were deposited on mirror polished fine grain graphite substrates using the Thermionic Vacuum Arc (TVA) technology available at NILPRP – Magurele, Romania. The developed system for thin film deposition using thermionic vacuum arc (TVA) ...

Impulsive Thermomechanics of hypersonic surface phononic crystals

F. Banfi[1], D. Nardi[2], and M. Travagliati[3]
[1]Dipartimento Matematica e Fisica, Università Cattolica, Brescia, Italy
[2]JILA, University of Colorado at Boulder, Boulder, Colorado, United States
[3]Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy

Ultrafast optical generation of pseudosurface acoustic waves is investigated in hypersonic surface phononic crystals. The thermomechanics is modeled from first-principles to follow the initial impulsive heat-driven displacement in the time domain. Spectral decomposition of the displacement over the surface phononic crystal eigenmodes outlines asymmetric resonances featuring the coupling between ...

Numerical Experiments for Thermally-induced Bending of Nematic Elastomers with Hybrid Alignment

L. Teresi[1], and A. DeSimone[2]
[1]LaMS - Modeling & Simulation Lab, University Roma Tre, Roma, Italy
[2]SISSA - International School for Advanced Studies, Trieste, Italy

We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition temperature, thus yielding the possibility of producing temperature-driven actuators. Here, we simulate the ...

Homogenized models of electrically-coupled excitable tissues

P. Goel


Pranay Goel received his B. Tech. in Engineering Physics from IIT Bombay, and MS and PhD in Physics from the University of Pittsburgh in 2003. He went on to two postodoctoral positions, the first at the Mathematical Biosciences Institute, The Ohio State University, and another at the Laboratory of Biological Modeling, The U.S. National Institutes of Health. He has been with IISER Pune since ...

3191 - 3200 of 3394 First | < Previous | Next > | Last