研究開発におけるマルチフィジックスシミュレーションの具体例

さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.


COMSOL コンファレンス 2020 論文集を見る

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]


[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by ... 詳細を見る

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and ... 詳細を見る

Calculating Power Loss of Contactless Power Transmission Systems with Ferrite Components

S. Hanf[1] and D. Kürschner[1]
[1]Institut für Automation und Kommunikation Magdeburg, Magdeburg, Germany

In this paper a methodology for calculating loss within contactless inductive power transmission systems, resulting from hysteresis and eddy current effects, is presented. The usage of the mathematical models of Stoll and Steinmetz for the determination of core loss with COMSOL is ... 詳細を見る

Static and Dynamic Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics®

R. Wislati[1] and H. Haase[1]
[1]Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper an Electromagnetic Solenoid Actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) systems for internal combustion engines. The analysis of ... 詳細を見る

Assessment of COMSOL Capabilities to Analyse the Thermo- Hydrodynamic Behaviour of the MSR Core

A. Cammi[1], V. Di Marcello[1], C. Fiorina[1], and L. Luzzi[1]

[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The present work is aimed at evaluating the capabilities of COMSOL Multiphysics® to treat heat transfer in Molten Salt Reactors (MSR). The analyzed situation is represented by the molten salt in turbulent regime flowing through a cylindrical channel surrounded by graphite, with both ... 詳細を見る

Thermal and Electrostatic Analyses of One Dimensional CFC Diagnostic Calorimeter for SPIDER Beam Characterisation

M. De Muri[1][2], M. Dalla Palma[1], P. Veltri[1], A. Rizzolo[1], N. Pomaro[1], and G. Serianni[1]
[1]Consorzio RFX, Euratom-ENEA Association, Padova, Italy
[2]Dipartimento di Ingegneria Elettrica, Padova University, Padova, Italy

The main purpose of SPIDER (Source for the Production of Ions of Deuterium Extracted from RF plasma) test facility is the investigation and optimization of a negative ion beam produced by the full size ion source for ITER NBIs (Neutral Beam Injectors). Thermal, transient, non-linear FE ... 詳細を見る

Modelling Thermal Time-of-Flight Sensor for Flow Velocity Measurement

O. Ecin[1], E. Engelien[2], M. Malek[2], R. Viga[2], B. Hosticka[1], and A. Grabmaier[2]

[1]Institut of Mikroelektronische Systeme, University Duisburg-Essen, Duisburg, Germany
[2]Institut of Elektronische Bauelemente und Schaltungen, University Duisburg-Essen, Duisburg, Germany

This communication reports on a numeric fluid dynamics simulation on a pipe flow model. The basic background is to determine the velocity of a flowing fluid in a pipe by using the Thermal Time-Of-Flight (TTOF) method on water. The visualization of the temperature and velocity ... 詳細を見る

Gravity-Driven Film Flow: Design of Bottom Topography

C. Heining[1] and N. Aksel[1]

[1]Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany

We study the gravity-driven film flow of a Newtonian liquid down an inclined plane. Many applications such as heat- and mass exchangers and evaporators or film coaters require undulated or rippled bottom topographies. In these cases, the interplay of gravity, surface tension and inertia ... 詳細を見る

CFD Analysis of Loss Of Vacuum Accident for Safety Application in Experimental Fusion Reactor Facility

C. Bellecci[1], P. Gaudio[1], I. Lupelli[1], A. Malizia[1], M.T. Porfiri[2], R. Quaranta[1], and M. Richetta[1]

[1]EURATOM, Faculty of Engineering, University of Rome “Tor Vergata”, Roma, Italy
[2]ENEA Nuclear Fusion Tecnologies, Frascati, Roma, Italy

In an experimental nuclear fusion facility dust is generated both during normal machine operations and by macroscopic erosion of the plasma facing materials due to intense thermal loads. This dust can be mobilized by air ingress in case of LOVA (Loss of Vacuum Accident) threaten safety ... 詳細を見る

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the ... 詳細を見る