Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Extending Engineering Simulations to Scientists: Food Safety and Quality Prediction Using COMSOL Multiphysics® and LiveLink™ for Excel®

A. Warning[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

The objective of this study was to develop an easy to use interface in Excel® that connects to not only the solvers in COMSOL Multiphysics®, but also existing databases of food properties, foodborne pathogenic microorganisms kinetics, and chemical kinetics, creating a comprehensive simulation software to predict food safety and quality. The user interface allows the user to select the food, ...

Water Quality Model for Brewster Lake

Z. Aljobeh[1], G. Argueta[1]
[1]Valparaiso University, Valparaiso, IN, USA

A numerical model was developed to make spatial and temporal predictions of the water quality for Brewster Lake, located in southwestern Michigan. The model considers the hydrodynamics of the lake, hydrologic conditions, physical, chemical and biochemical processes that take place in the lake, and nutrient loadings from the surrounding watershed. Physical, chemical, and biochemical data ...

Estimativa do Fluxo de Calor em uma Ferramenta de Corte Durante um Processo de Usinagem com o Uso do Software COMSOL Multiphysics® e de Técnicas de Problemas Inversos - new

R. F. Brito[1], S. R. de Carvalho[2], S. M. M. de L. e Silva[1]
[1]Federal University of Itajubá - UNIFEI, Itabira, Minas Gerais, Brasil
[2]Federal University of Uberlândia - UFU, Uberlândia, Minas Gerais, Brasil

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose of the present work is to present the improvements performed in relation to the authors’ previous work to develop the complex geometry of a machining process. Specification function, which is an ...

Multicomponent Diffusion Applied to Osmotic Dehydration - new

H. Cremasco[1], K. Angilelli[1], D. Borsato[1]
[1]Universidade Estadual de Londrina, Londrina, Paraná, Brazil

The transfer of sucrose and fructooligosaccharides to melon and water to solution was modeled based on generalized form of Fick’s second law for simultaneous diffusion and resolved by the finite element method using the software package COMSOL Multiphysics® software. The diffusion coefficients, the mass transfer coefficient and the Biot number were determined using the simplex optimization ...

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient pressure to exchange materials. This is a two way process, at which nutrients, Oxygen, and other ...

FEM Based Modeling In COMSOL Multiphysics and Design Of Control Of Distributed Parameter Systems

C. Belavý, and G. Hulkó, and K. Ondrejkovic, and D. Šišmišová
Slovak University of Technology in Bratislava, Bratislava, Slovakia

This paper presents a finite element method based modeling and design of control for distributed parameter systems. First, models of distributed parameter systems in the form of lumped-input/distributed-output systems and structure of control loop are introduced. Next, modeling of temperature fields of the casting die as distributed parameter systems in preheating process is performed in COMSOL ...

Transient Pseudo-3D Model of Multi-Beam Laser Thermal Treatment System

J. Brcka
Technology Development Center
TEL US Holdings, Inc.
Albany, NY

Laser thermal treatment (LTT) systems have applications in IC fabrication for improving low-k dielectrics properties, polymer curing and resist processing. This contribution deals with a transient model of fast scanning and pulsing laser multi-beam system used in semiconductor processing. General Heat Transfer application mode formulation with multi-scale modelling approaches are employed. ...

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits of running COMSOL in parallel, specifically by running several computational threads in shared-memory ...

Using The Time Parameter As The Third Geometrical Dimension

J. Krah
AkerSolutions, Fornebu, Norway

The paper demonstrates that for some models a 2D geometry in Cartesian coordinates can be used to obtain a 3D solution with changes in z-direction. A heat exchanger serves as an example of a practical application. The required flow rate in a straight cooling pipe penetrating perpendicularly into a warm wall is calculated to keep the wall temperature below a given limit. Cold water pumped into ...

Semismooth Newton Method for Gradient Constrained Minimization Problem

S. Anyyeva, and K. Kunisch
Institute of Mathematics and Scientific Computing
Karl Franzens University
Graz, Austria

We treat a gradient constrained minimization problem which has applications in mechanics and superconductivity. A particular case of this problem is the elastoplastic torsion problem. In order to solve the problem we developed an algorithm in an infinite dimensional space framework using the concept of the generalized Newton derivative. The Desktop environment of COMSOL Multiphysics 4.1 was ...