研究開発におけるマルチフィジックスシミュレーションの具体例

さまざまな業界のエンジニア, 研究者, 科学者がマルチフィジックスシミュレーションを使用して革新的な製品の設計とプロセスを研究および開発しています. COMSOL カンファレンスで発表したテクニカルペーパーやプレゼンテーションからインスピレーションを得てください. 以下の選択項目を参照するか, クイック検索ツールを使用して特定のプレゼンテーションを検索するか, アプリケーション領域でフィルタリングします.


COMSOL コンファレンス 2020 論文集を見る

Simulation Methods and Teachingx

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and ... 詳細を見る

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits ... 詳細を見る

Finite Element Analysis of Molecular Rydberg States

M.G. Levy[1], X. Liang[1], R.M. Stratt[1], and P.M. Weber[1]

[1]Department of Chemistry, Brown University, Providence, Rhode Island, USA

Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make ... 詳細を見る

Calculation of the Magnetic Field Intensity in a Rectangular Conductor Carrying Current in Electromagnetism Introductory Courses

J.C. Olivares-Galvan[1], I. Hernandez[2] , P.S. Georgilakis[3], and L.E. Campero[1]

[1]Universidad Autónoma Metropolitana, Azcapotzalco, Mexico, D.F.
[2]Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Guadalajara, Guadalajara, Jalisco, Mexico
[3]School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

This paper describes a type of didactic material used when teaching electromagnetism. The purpose is to guide the students to verify the results of a Finite Element (FE) simulation using those obtained analytically. This procedure has shown to be of great help during their learning of ... 詳細を見る

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical ... 詳細を見る

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2 involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. ... 詳細を見る

Including Expert Knowledge in Finite Element Models by Means of Fuzzy Based Parameter Estimation

O. Krol[1], N. Weiss[1], F. Sawo[1], and T. Bernard[1]

[1]Fraunhofer Institute for Information and Data Processing, Karlsruhe, Germany

In this paper we present a novel approach for modeling spatial distributed bio- chemical and environmental processes like the growth of plants and the related biochemical reactions. The physical phenomena like flow and mass transport can be described by fluid dynamics equations, but for ... 詳細を見る

Second Order Drift Forces on "Offshore" Wave Energy Converters

L. Martinelli[1], A. Lamberti[1], and P. Ruol[2]

[1]DISTART Idraulica, Università di Bologna, Bologna, Italy
[2]IMAGE, Università di Padova, Padova, Italy

Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this ... 詳細を見る

Estimation of Boundary Properties Using Stochastic Differential Equations and COMSOL

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The inverse diffusion problems deal with the estimation of many crucial parameters such as the diffusion coefficient, source properties, and boundary conditions. Such algorithms are widely applied in many design problems in different physical, chemical, and biological fields. Recently, ... 詳細を見る

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using ... 詳細を見る